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Note Set 9 – Dynamic Optimization Problems and 

Dynamic Games 

 
 

 

 

 

 

9.1 – Overview 

 

 Often, we will be interested in solution dynamic optimization problems, where an 

agent maximizing the discounted stream of utilities 
0

( ) ( )t
t

t
U x u xβ

∞

=

=∑  subject to some 

constraints on the stream tx . In this note set, we will cover some of the theory behind 

these problems as well as some numerical approaches for solving these problems. We 

will see that we can reformulate these problems in “recursive form” by introducing value 

functions. We can then solve these problems by applying fixed point iterations to a finite 

dimensional approximation to the functional equation that defines the value function. 

 

9.2 – Contraction Mappings 
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 Consider a map T  of the space X  into itself. We say that *x  is a fixed point of 

T  if we have ( *) *T x x= . Often, we would like to find the fixed point of a mapping T  . 

Notice that in the case where DX = , finding a fixed point is much like solving a 

nonlinear system. For example, we can transform any non-linear system ( ) 0f x =  into a 

fixed point problem by defining ( ) ( )T x x f x= − . Here, we have ( *) 0f x =  if an only if 

( *) *T x x= . Conversely, we can transform a fixed-point problem into a non-linear 

system by specifying ( ) ( )f x T x x= − . 

 We say that T  is a contraction mapping if ( ) ( )T x T y x yβ− ≤ −  for some 

1β <  and all ,x y X∈ . Finding a fixed point of contraction mappings is much easier than 

the general problem of solving a non-linear system of equations. A few results will 

explain this. First, a contraction mapping is guaranteed to have a unique solution- i.e. 

both existence and uniqueness are guaranteed. Furthermore, the fixed point can be count 

by applying fixed point iterations to T . 

 Before we present the theory behind these results, we need to introduce the idea 

of a metric space. This allow us to introduce the theory in a level of generality that the 

applies to both finite and functional problems. 

 

Definition: A Metric Space is a set S  and a distance function : S Sρ × →  such that for 

all , ,s t u S∈ , we have, 

(i) ( , ) 0s tρ ≥  and ( , ) 0s tρ =  only if s t= . 

(ii) ( , ) ( , )s t t sρ ρ=  
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(iii) ( , ) ( , ) ( , )s u s t t uρ ρ ρ≤ +  

 

We say that a metric space ( , )S ρ  is complete if every Cauchy sequence in S  converges 

to an element in S . A sequence 1{ }n ns ∞
=  in S  is a Cauchy sequence if for each 0ε > , 

there exists an Nε  such that ( , )m ns sρ ε<  for all ,m n Nε≥ . 

 

Theorem 9.1 (Contraction Mapping Theorem): If ( , )S ρ  is a complete metric space and 

:T S S→  is a contraction mapping with modulus 1β < , then, 

(i) T  has exactly one fixed point *s S∈ . 

(ii) For any 0s S∈ , 0 0( , *) ( , *)n nT s s s sρ β ρ≤  for 0,1,2,...n =  

 

Proof: (i) We will prove that a fixed point exists by finding such a point. Define 

0
n

ns T s=  and let *s  be the limit of the sequence 1{ }n ns ∞
= . To prove that this series 

converges, we must show that for each 0ε > , there exists an Nε  such that ( , )m ns sρ ε<  

for all ,m n Nε≥ . Without loss of generality, we will show that this holds for all m n> . 

Since T  is a contraction mapping, we have, 

2
1 1 1 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , )n n n n n n n n n ns s Ts Ts s s Ts Ts s sρ ρ βρ βρ β ρ+ − − − − − −= ≤ = ≤  

3
2 3 1 0( , ) ... ( , )n

n ns s s sβ ρ β ρ− −≤ ≤ ≤  

By the triangular inequality, we have, 

1 1 2 1( , ) ( , ) ( , ) ... ( , )m n m m m m n ns s s s s s s sρ ρ ρ ρ− − − +≤ + + +  

1 2
1 0 1 0 1 0( , ) ( , ) ... ( , )m m ns s s s s sβ ρ β ρ β ρ− −≤ + + +  
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1 2
1 0 1 0( ... 1) ( , ) ( , )

1

n
n m n m n s s s sββ β β ρ ρ

β
− − − −= + + + ≤

−
 

This implies that the sequence converges to some point *s . Since S  is complete, it must 

be the case that *s S∈ . The final step it to show that * *Ts s= . Notice that, 

1
0 0 0 0

1
0 0

( *, *) ( *, ) ( , *) ( *, ) ( , *)

( , *) ( , *)

n n n n

n n

Ts s Ts T s T s s s T s T s s

T s s TT s s

ρ ρ ρ βρ ρ

ρ ρ

−

−

≤ + ≤ +

=
 

for all n . Now, we already know that each of these terms converges to zero as n →∞ . 

Hence, we have that ( *, *) 0Ts sρ = , or * *Ts s= . Finally, we must show that no other 

point s S∈  satisfies Ts s= . Consider any point Ts s= . Notice that, 

( , *) ( , *) ( , *)s s Ts Ts s sρ ρ βρ= ≤  

which implies that, 

( , *)(1 ) 0s sρ β− ≤  

Since 1β < , this cannot hold unless ( , *) 0s sρ =  , proving that *s s= . Hence, the fixed 

point is unique. 

(ii) Notice that, 

1 2 2
0( , *) ( , *) ( , *) ( , *) ... ( , *)n n n n nT s s T s Ts T s s T s s s sρ ρ βρ β ρ β ρ− −= ≤ ≤ ≤ ≤  

which suffices to prove the result. 

 

 The following shortcut is useful in proving that a mapping is a contraction 

mapping, 

 

Theorem 9.2 (Blackwell’s Theorem): Let JX ⊆  and let ( )B X  be the space of bounded 

function :f X → , with the sup-norm. Let : ( ) ( )T B X B X→  be an operator satisfying, 
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(i) (Monotonicity) If , ( )f g B X∈  and ( ) ( )f x g x≤  for all x X∈  implies that 

( )( ) ( )( )Tf x Tg x≤ , for all x X∈ . 

(ii) (Discounting) There exists a (0,1)β ∈  such that [ ( )]( ) ( )( )T f a x Tf x aβ+ ≤ +  for 

all ( )f B X∈ , 0a ≥ , and x X∈ . 

  

When a non-linear system can be written as a contraction mapping, we will 

always want to use this approach into order to solve for the root of the non-linear system 

(incidentally, applying the contraction mapping theorem is one of the useful approaches 

to prove existence and uniqueness). In the next few sections, we will learn in what 

situations we are likely to be able to apply contraction mappings. We will show how to 

apply fixed point iterations even when the underlying mapping is not a contraction 

mapping. 

 

8.3 – Dynamic Programming 

 

 Consider an unemployed individual who receives a job offer in each period. Job 

offers are drawn from the distribution sF  which has support on [0, ]s . An individual may 

choose to accept or reject the job offer in each period. If he accepts the job offer, he 

receives that salary for the rest of his life. Otherwise, he receives nothing in that period. 

Let tx  denote the individuals income in period t . Then the individuals utility function is 

given by, 
0

t
t

t

xβ
∞

=
∑ . 
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 Now, let ( ) 1t ta h =  if the individual accepts the job offer in period t  and 

( ) 0t ta h = . Here 0 1( , ,..., )t th s s s=  denotes the history of salary offers. The individuals 

optimization problem can be specified as, 

0 1
0( , ,...) 1

max t
ta a t

E xβ
∞

=

⎡ ⎤
⎢ ⎥⎣ ⎦
∑  

such that *, *
0,
t

t

s t t
x

otherwise
≥⎧

= ⎨
⎩

 where *t  is the smallest t  such that 1ta =  

This problem is specified in sequence form, where the individuals strategy in each period 

is a contingency plan. 

 In order to apply the theory of contraction mapping, we rewrite the above problem 

in recursive form. We let ( )v s  denote the “value” of receiving an offer of s . Given this 

offer, the individual can receive 2 1
1...s s s sββ β −+ + + = . Alternatively, he can receive 

'0 [ ( ')]sE v sβ+ . Hence, we can write, 

{ }1
'1( ) max , [ ( ')]sv s s E v sβ β−=  

This is a functional equation in v . We can write this as v Tv= . When we write the 

problem this way, it is say to be in recursive form. 

 We can look for a solution of the form, 

1
1 , *

( )
*,
s s s

v s
v otherwise
β− ≥⎧

= ⎨
⎩

 

Notice first that '[ ( ')] ( *) * (1 ( *))* [ | *]s s sE v s F s v F s E s s s= + − ≥ . We require that, 

* ( *) * (1 ( *))* [ | *]s sv F s v F s E s s s= + − ≥  

1
1 * *s vβ β− =  
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Combining these equations, we have, 

1
(1 ) * [ | *]s E s s sβ β− = ≥  

In the special case where ~ [0, ]s U s , we have, 

(1 )*
2 (1 )

s sβ β
β β
−

=
− −

 

More generally, we can solve for the equilibrium as a single nonlinear equations, but let 

us consider solving this as a functional fixed point problem (we may have to compute 

[ | *]E s s s≥  using numerical integration). 

 Let us start by showing that T  is a contraction mapping. Consider any ,u v , and 

let use select ρ  to be the sup-norm. We have, 

{ } { }1 1
' '1 1

0
( , ) sup max , [ ( ')] max , [ ( ')]s s

s s
Tu Tv s E u s s E v sβ βρ β β− −

≤ ≤
= −  

Suppose, without loss of generality, that ' '[ ( ')] [ ( ')]s sE u s E v s< . We have, 

'

' '
(1 ) [ ( ')]

( , ) max sup [ ( ')] [ ( ')] ,
s

s s
s E u s

Tu Tv E u s E v s
β β

ρ β β
< −

⎧= −⎨
⎩

 

' '

1
' 1

(1 ) [ ( ')] (1 ) [ ( ')]
sup [ ( ')]

s s

s
E u s s E v s

E u s sβ
β β β β

β −
− ≤ ≤ −

⎫− ⎬
⎭

 

' '
0

( [ ( ') ( ')]) ( | ( ') ( ') |) sup ( ) ( ) ( , )s s
s s

E v s u s E v s u s u s v s u vβ β β βρ
≤ ≤

≤ − ≤ − ≤ − =  

The results show that T  is a contraction mapping, and hence, has a unique fixed point. 

Hence, one effective algorithm we can use is to discretize the space and apply fixed point 

iterations. 
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 Now, to solve the problem, we can approximate the functional equation using a 

finite system of equations. We let js  for 1, 2,...,j J=  denote a grid of points on [0, ]s .  

We have, 

1
1

1

max ,
J

i j k k
k

v s p vβ β−
=

⎧ ⎫= ⎨ ⎬
⎩ ⎭

∑  

Notice that we must approximate the distribution sF  using  finite approximation, jp . A 

reasonable approach is to use ( ) ( )1 1

2 2
j j j js s s s

j s sp F F+ −+ += −  for 1 j J< < , ( )0 1
1 2

s s
sp F += , 

and ( )1
21 J Js s

J sp F − += − . 

 

9.4 – Dynamic Campaign Spending by Political Parties 

 

 Consider a long-lived political party that receives resources 0d >  in each period. 

In each period, the party can spend some fraction x  other their resources. If the party 

spends x , its probability of winning the election is 1 1 0( ) xeγ γ γ −− −  where 1 01 0γ γ> > > . 

If the party does not spend its resources, it earns an interest rate of 0r > . We assume that 

the period utility of the party depends on the probability of winning the election, but that 

utility is discounted at a rate of 0 1β< < . 

 We can write the problem in the following form, 

{ }
1 2

1 1 0, ,... 0
max ( ) txt

x x t
eβ γ γ γ

∞
−

=

− −∑  such that 0 t tx y d≤ ≤ + , 1 (1 )( )t t ty r y d x+ = + + −  

Let us first reformulate this problem in recursive form, 

{ }1 1 00
( ) max ( ) ((1 )( ))x

x y d
v y e v r y d xγ γ γ β−

≤ ≤ +
= − − + + + −  
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Proposition 8.3: The Map, 

{ }1 1 00
( )( ) max ( ) ((1 )( ))x

x y d
Tv y e v r y d xγ γ γ β−

≤ ≤ +
= − − + + + −  

is a contraction mapping. 

 

Proof: We prove this result by invoking Blackwell’s Theorem. We must first show that 

( ) ( )w y v y≥  for all y  implies that ( )( ) ( )( )Tw y Tv y≥  for all y . Suppose that, 

{ }1 1 0
0

* arg max ( ) ((1 )( ))x

x y d
x e v r y d xγ γ γ β−

≤ ≤ +
∈ − − + + + −  

Then we have, 

{ }1 1 00
max ( ) ((1 )( ))x

x y d
e w r y d xγ γ γ β−

≤ ≤ +
− − + + + −  

*
1 1 0( ) ((1 )( *))xe w r y d xγ γ γ β−≥ − − + + + −  

*
1 1 0( ) ((1 )( *))xe v r y d xγ γ γ β−≥ − − + + + −  

{ }1 1 00
max ( ) ((1 )( ))x

x y d
e v r y d xγ γ γ β−

≤ ≤ +
= − − + + + −  

proving the monotonicity condition. 

The second condition requires that [ ( )]( ) [ ( )]( )T v a y T v y aβ+ ≤ + . We have, 

{ }1 1 00
[ ( )]( ) max ( ) ( ((1 )( )) )x

x y d
T v a x e v r y d x aγ γ γ β−

≤ ≤ +
+ = − − + + + − +  

{ }1 1 00
max ( ) ((1 )( ))x

x y d
e v r y d x aγ γ γ β β−

≤ ≤ +
= − − + + + − +  

[ ( )]( ) [ ( )]( )T v x a T v x aβ β= + ≤ +  

proving the result. 
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 We will solve the model by applying fixed-point iterations. Let us try the 

parameterization, 1d = , 0.9β = , 1.05r = , 1 0.6γ = , 2 0.4γ = . Let us use a grid of 

201M =  points on [0,10]. Using this approach, we obtained the results below. Notice 

that the strategy the party follows is to spend the initial endowment fairly quickly, and 

then continue to the entire endowment of 1d =  is each future period. 

 

Figure 9.1 – Value Function 
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Figure 9.2 – Policy Function 
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9.5 – The Random Proposer Model 

 

 We consider the following model. The legislature consists of N  members. Policy 

outcomes are characterized by x X∈  where X  is the policy space. In each period, a 

random member of the legislature is selected to propose a bill b . Legislator n  is selected 

with probability np . Each member of the legislature can vote for or against the proposal. 

Each legislator has voting weight nw . A proposal requires as least q  votes to pass. If the 

sum of the weights of legislators voting for the proposal is greater than or equal to q , the 

bill passes and the game ends. Otherwise, the game continues. Utilities are discounted at 

constant rate β . 
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 We will look for a stationary equilibrium where an individual’s proposal strategy 

*( )b n  only depends on his index (and not the past history). We look an equilibrium 

where an individual’s voting strategy *( ) {0,1}nv b ∈  depends only on the proposed bill 

b . Here, *( ) 1nv b =  if the individual votes for the proposed bill. We define 

1

*( ) 1 *( )
N

n n
n

v b w v b q
=

⎧ ⎫= ≥⎨ ⎬
⎩ ⎭
∑ . We let ( )nW b  denote the value to legislator n  of voting 

over the proposal b . We assume that an individual votes for the bill if the bill gives him 

at least as much utility as the continuation value. We can specify. 

{0,1}

1

1 *( )} ( )
( ) max

1 *( )} ( *( ))

n n n
m n

n Nv

n n m n
m n m

vw v b q U b
W b

vw v b q p W b mβ

≠

∈

≠ =

⎧ ⎫⎧ ⎫
+ ≥⎨ ⎬⎪ ⎪

⎪ ⎩ ⎭ ⎪= ⎨ ⎬
⎧ ⎫⎪ ⎪+ + <⎨ ⎬⎪ ⎪⎩ ⎭⎩ ⎭

∑

∑ ∑
 

We also need to consider the proposals incentive. The proposer will simply choose b  to 

satisfy, 

{ }*( ) arg max *( ) ( ) (1 *( )) ( )n n
b

b n v b U b v b W b= + −  

 We have the following system of equations, 

(1) 1

1, ( ) ( *( ))
*( )

0,

N

n m n
mn

U b p W b m
v b

otherwise

β
=

⎧ ≥⎪= ⎨
⎪⎩

∑  

(2) 
1

*( ) 1 *( )
N

n n
n

v b w v b q
=

⎧ ⎫= ≥⎨ ⎬
⎩ ⎭
∑  

(3) { }*( ) arg max *( ) ( ) (1 *( )) ( )n n
b

b n v b U b v b W b= + −  
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(4) 
{0,1}

1

1 *( )} ( )
( ) max

1 *( )} ( *( ))

n n n
m n

n Nv

n n m n
m n m

vw v b q U b
W b

vw v b q p W b mβ

≠

∈

≠ =

⎧ ⎫⎧ ⎫
+ ≥⎨ ⎬⎪ ⎪

⎪ ⎩ ⎭ ⎪= ⎨ ⎬
⎧ ⎫⎪ ⎪+ + <⎨ ⎬⎪ ⎪⎩ ⎭⎩ ⎭

∑

∑ ∑
 

 The recursive structure of some of these equations means that we can reduce the 

problem. In particular, let 1,..., NW W W=  and let * ( *(1),..., *( ))b b b N= . Let ( , *)W bυ = . 

The we can write equations (3) and (4) as a fixed point, Tυ υ= , where the definition of 

*v  and *nv  is given by (1) and (2). We can then apply fixed point iterations to 

characterize the solution. 

 The next step involves discretizing the problem. We will approximate X  with a 

finite grid of points, 1,..., Jx x . We can write the four above equations in discrete form as, 

(1’) , ( )n j n jU U x=  

(2’) , ,n m n jW W=  where *( ) jb n x=  

(3’) , ,
1,

1,
*

0,

N

n j m n m
mn j

U p W
v

otherwise

β
=

⎧ ≥⎪= ⎨
⎪⎩

∑  

(4’) ,
1

* 1 *
N

j n n j
n

v w v q
=

⎧ ⎫= ≥⎨ ⎬
⎩ ⎭
∑  

(5’) *n jb x=  where { }, ,
1

arg max * (1 *)j n j j n j
j J

j v U v W
≤ ≤

= + −  

(6’) 
, ,

, {0,1}

, ,
1

1 *}
max

1 *}

n n j n j
m n

n j Nv

n n j m n m
m n m

vw v q U
W

vw v q p Wβ

≠

∈

≠ =

⎧ ⎫⎧ ⎫
+ ≥⎨ ⎬⎪ ⎪

⎪ ⎩ ⎭ ⎪= ⎨ ⎬
⎧ ⎫⎪ ⎪+ + <⎨ ⎬⎪ ⎪⎩ ⎭⎩ ⎭

∑

∑ ∑
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 Notice that (1) can be pre-computed. Set (2) requires 2( )O N  operations. 

Computing (3) requires 2( )O N J  operations, while (4) requires ( )O N  operations.  

Overall, the process requires 2( )O N J  operations per iteration. 

 

A More Compact Representation of the Random Proposer Model 

 

 Kalandrakis (2006) show that we can represent the problem in a more compact 

form. We assume that in equilibrium, voters will approve a proposal if it yield them a 

reservation level of utility, nr . We can write the problem as, 

(1) 
1

( *( ; ))
N

n m n
m

r p U b n rβ
=

= ∑  

(2) 

1

: 1{ ( ) }

*( ; ) arg max ( )
N

m m m
m

n

b w U b r q

b n r U b

=

≥ ≥

=
∑

 

We can combine these two equations to get a single one, 

1

1 : 1{ ( ) }

arg max ( )
N

m m m
m

N

n m m n
m b w U b r q

r p U U bβ

=

⎛ ⎞=
⎜ ⎟≥ ≥⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟∑⎝ ⎠

∑  

Which is a fixed point equation in the reservation values. 

 Notice that to iterate the fixed point equation, we must solve the sub-problem, 

arg max ( )n
b

U b  such that 
1

1{ ( ) }
N

n n n
n

w U b r q
=

⎛ ⎞≥ ≥⎜ ⎟
⎝ ⎠
∑  

This is a constrained maximization problem. In principle, we could solve this problem 

using an NLP algorithm. In practice, this is unlikely to be effective. The set, 
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1
: 1{ ( ) }

N

n n n
n

b w U b r q
=

⎧ ⎫⎛ ⎞
≥ ≥⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑  is unlikely to be convex, and may not even be connected. 

To solve this problem effectively, we will have to search over a grid of points. If we 

solve the inner maximization problem over a grid of J , the overall computational cost is 

2( )O N J  per iteration, so the overall cost of this approach is the same as the previous 

approach. 

 

A More Realistic Model of Legislative Bargaining 

 

 Let us consider a more complicated and more realistic model of legislative 

bargaining. In this case, a bill 0b X∈  is introduced. The status quo is s X∈ . In each 

period, a random member of the legislator is selection (with recognition probability np ). 

This member may either move for the previous question 1q =  or propose an amendment 

a X∈ . If the amendment passes, it replaces the current bill. If the individual proposes to 

order the previous question, the legislature votes on whether to continue debate. If the 

legislature votes to end debate, then a final voting round is held between the amended bill 

and the status quo. 

 We let ( )nW b∞  denote the value to player n  of reaching the last period with b  as 

the bill. We have, 

1 1

( ) 1 1{ ( ) ( )} ( ) 1 1{ ( ) ( )} ( )
N N

n m m m n m m m n
m m

W b w U b U s q U b w U b U s q U s∞

= =

⎧ ⎫ ⎧ ⎫= ≥ ≥ + ≥ <⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭
∑ ∑  

This expression simply indicates that the voters vote sincerely in the final period. Next, 

we let ( , )nV b a  denote the value to player n  of voting over amendment a  where b  is the 
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current for of the bill. We let ( )nW b  denote the value of individual n  of voting to end 

debate when the current for of the bill is b . We let *( )na b  and *( )nq b  denote the policy 

functions of individual n , which indicate whether the individual orders the previous 

question, and if not, what amendment he proposes. We have, 

[ ]

[ ]
1

{0,1}

1

( , )

1{ *( , ) } *( ) ( , *( )) (1 *( )) ( )
max

1{ *( , ) } *( ) ( , *( )) (1 *( )) ( )

n

N

m m n m n n
m n m

Nv

m m n m n n
m n m

V b a

w v b a w v q p q m V a a m q m W a

w v b a w v q p q m V b a m q m W b

β

β

≠ =

∈

≠ =

⎧ ⎫+ ≥ + −⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪+ + < + −
⎪ ⎪⎩ ⎭

∑ ∑

∑ ∑

 

[ ]{0,1}

1

( )

1{ *( ) } ( )

max
1{ *( ) } *( ) ( , *( )) (1 *( )) ( )

n

m m n n
m n

N
v

m m n m n n
m n m

W b

w y b w v q W b

w y b w v q p q m V b a m q m W b

β

β

∞

≠

∈

≠ =

⎧ ⎫+ ≥
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪+ + < + −
⎪ ⎪⎩ ⎭

∑

∑ ∑
 

Finally, we define the policy functions as, 

*( ) arg max ( , )n n
a

a b W b a= ,  
0, ( , *( )) ( )

*( )
1,

n n n
n

W b a b V b
q b

otherwise
≥⎧

= ⎨
⎩

 

The vote function are given by, 

1 1

*( , ) 1 ( , *( )) ( , *( ))
N N

n m n n m n n
m m

v b a p V a a a p V b a b
= =

⎧ ⎫= ≥⎨ ⎬
⎩ ⎭
∑ ∑  

1

*( ) 1 ( ) ( , *( ))
N

n n m n
m

y b W b p V b a b∞

=

⎧ ⎫= ≥⎨ ⎬
⎩ ⎭

∑  

In order to set up the fixed point correspondence, we need to iterate ( , , *, *)n n n nV W a q . 

 

9.6- Suggested Reading 
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