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Overview of Semi and Nonparametric Models

e Parametric Model: statistical model characterized by finite
dimensional unknown parameter

° ¥, ~N(u,0°)

o y. ~N(B'%,0°) (normal-linear model)

e Nonparametric Model: statistical model characterized by infinite
dimensional unknown parameter

e y ~ f where f is unknown (density estimation)

° y.=0(x,)+¢,, Elg,|x,]=0 (nonparametric regression)
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Overview of Semi and Nonparametric Models

e Semiparametric Model: statistical model characterized by finite
dimensional parameter of interest and infinite dimensional “nuisance”
parameter

o Y. =pB'X, +¢, & | X, ~ F(e|x) with E[¢, | x,]=0 (semiparametric
linear model)

= [ is “parameter of interest”
= F is a nuisance parameter

° y, =/['%X +¢, (X,&) Is stationary and ergodic and E[g, | x,]=0
= [ is “parameter of interest”

= Stochastic process characterizing (x,¢,) is a nuisance
parameter
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Overview of Semi and Nonparametric Models

e More Semiparametric/Nonparametric Models:
e vy =0(8'x)+e&,, &, | X ~F(e|x) with E[¢, | x,]=0 (linear index
model)
o Yy =0g(x)+p'2 +¢&,, &, | X ~F(e|x) with E[¢, | x.]=0 (partially
linear model)
e Pr(y,=1)=G(8'%,) (semiparametric binary choice)
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Overview of Semi and Nonparametric Models

e Parametric Models:

e MLE is efficient if parametric model is correct
e MLE is often inconsistent if parametric model is incorrect

e /N -convergence rate

e Nonparametric Models:

e More generality, but...
= Theory more difficult

= Implementation difficult

= Slower convergence (slower than parametric rate of JN )
= Efficiency loss (relative to MLE if parametric model is corr.)
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Overview of Semi and Nonparametric Models

e Semiparametric Models:

e More generality, and...
= Often, VN -convergence for parameter of interest
= Often, easy to implement
= Often, little efficiency loss

e Theory can be very hard, but some important cases are
sufficiently worked out so that we don’t have to worry about it

e Lecture 1 will focus on easy but powerful semiparametric estimators
e Lecture 2 will focus on basics of nhonparametric estimation

e |Lecture 3 will focus on applications of honparametric estimators and
more advanced semiparametric estimators
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Overview of Semi and Nonparametric Models

e Examples of “Easy” Semiparametric Estimators:

e OLS w/ robust se’s - semiparametric because OLS is consistent
even if error terms are non-normal and heteroskedastic

e Poisson regression w/ robust se’s - semiparametric because
estimator is consistent when dependent variable is not Poisson
distributed

e Linear-nonlinear models w/ Newey-West se’s — semiparametric
because OLS/MLE are consistent even when dependent variable
exhibits time series dependence

o Short panels with clustered standard errors — semiparametric
because OLS/MLE are consistent even when dependent variable
exhibits group correlation/time series dependence
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Overview of Semi and Nonparametric Models

e Why Use These Semiparametric Estimators?
e Easy to apply:

= Some parametric alternatives are VERY computationally
Intensive

o Skip the specification step (which is sometimes near impossible)
= Modeling heteroskedasticity
= Selecting ARMA structure (w/ time series and panel data)

= Selecting between negative binomial, zero-inflated, zero-
truncated, etc., in count models



Lecture 1. Semiparametric Methodsl Page 9

Overview of Semi and Nonparametric Models

e Drawbacks:

o Efficiency loss relative to parametric model
e However:

e Parametric model may be wrong!

e Usually, semiparametric estimators achieve semiparametric
efficiency bounds (they are efficient under maintained
assumptions)

e Often, not much efficiency loss

o Often, these semiparametric estimators give robustness
practically “for free” since we don’t have to estimate the nuisance
parameters
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Heteroskedasticity in the Linear Model

e Parametric Linear Model:
1.y, =p0,"X, +¢, (linearity)
2. (x.,&,) are independent (independence)
3. E[x,x."T has full rank (identification)
4. Elg, |x,]1=0
5. & ~N(0,06°) (homoskedasticity and normality)

e Under 1-5, OLS is MLE; OLS is unbiased, normally distributed,
consistent, and asymptotically normal; the information equality holds;
and OLS is efficient
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Heteroskedasticity in the Linear Model

e Semiparametric Linear Model:
1.y, =p0,"X, +¢, (linearity)
2. (x,,&,) are independent (independence)
3. E[x,x."T has full rank (identification)
4. Elg, |x,]1=0

e Consider OLS as semiparametric estimator

e Under 1-4, OLS is unbiased, rermally-distributed, consistent, and
asymptotically normal; the-information-egquality-holds; and OLS-s
iciant
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Heteroskedasticity in the Linear Model

e Properties of OLS as semiparametric estimator:
~ N -1 N N -1 N
b i3] (430w |=ae i |43k
n=1 n=1  =(5 "% +&) n=1 n=1

e By law of iterated expectations,
E[x.e,1=E[x E[e,|x,]]=0
=0

e OLS is unbiased:

N

E[’gl X] = IBO +|:ﬁZXan I:| |:ﬁz_: E[ngn]:| - /Bo

n=1
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Heteroskedasticity in the Linear Model

e OLS is consistent:

ﬁangn——Mmb E[Xg] 0

ﬁ:ﬂ0+|:_ixnxnj| |: angnj| o :80 |: anXn':|O=ﬂO

—prob. 4

e Normality/homoskedasticity not needed for these results
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Heteroskedasticity in the Linear Model

e OLS is asymptotically normal:

\/W(’g_ﬂo): |:ﬁZXan':| {ﬁzxngn}
! LLN ! CLT
E[x x T*  N(O,Var(x.¢,))

\/W(B\ _IBO)L) N (O, E[ann ']_1Va|"(xngn) E[ann ']_l)

bread meat bread

e Estimate asymptotic distribution using:

N
E[ann I]_1 ~ ﬁzxnxn l
n=1

N
Var(x,e,) = E[&,’X,X, T2 £ D&, %X, "
n=1
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Heteroskedasticity in the Linear Model

e Implementation:
e In stata, “regress y x1 x2, robust”
e Inr, use sandwich package:
= “Im1 <- Im(Y ~ X1 + X2)"

= “swl <- sandwich(Im1)”
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Heteroskedasticity in the Linear Model

e Overview:
e Apply OLS when homoskedasticity/normality do not hold
o Benefit: robustness

e Drawback: less efficiency
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Heteroskedasticity in the Linear Model

e Example:

e OLS is MLE when errors are normal and homoskedastic

e LAD is MLE when errors are double exponential and
homoskedastic

e OLS will be more efficient than LAD when errors are normal and
homoskedastic, robust se’s will be correct for both estimators

e LAD will be more efficient than OLS when errors are double
exponential and homoskedastic, robust se’s will be correct for
both estimators



Lecture 1: Semiparametric Methods | Page 18

Heteroskedasticity in the Linear Model

e Example Continued:

o Generate 1000 Monte Carlo data sets with N=500, X1~N(0,1),
X2~N(0,1), Beta=(-.5,1.5,-1.0), and errors either N(0,1) or

DExp(0,1)
DGP = Normal-Linear DGP = DExp-Linear
Betal Beta? Beta3  Betal Beta?2  Beta3
Rel. Eff. OLS/LAD 0.81 0.80 0.82 1.31 1.37 1.28

OLS Overconfidence 1.06 1.04 1.05 0.97 1.02 1.02
LAD Overconfidence 1.04 1.04 1.02 0.98 0.98 1.04
OLS se / LAD se 0.89 0.89 0.89 1.15 1.15 1.15
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Nonproportional Dispersion in Count Models

e Parametric Poisson Model:
1. y, ~Poisson(4,), 4, =e”™
2. (y.,,x ) areiid
e Notice that E[y, | x,]=Var(y,|x,)=4,=¢e”"

e \We can derive the log-likelihood function:

N
1(y, % 8) =D y.f'%, —€" " ~logy,!
n=1
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Nonproportional Dispersion in Count Models

e Semiparametric Poisson Model:

1. y—PoissopAi)A—=eL% E[y |x ]=eP™
2. (y,,x ) areiid

e Semiparametric estimator defined by:

~ N '
p=argmax+> y B'x —e’  —logy,!
s n=1
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Nonproportional Dispersion in Count Models

e Consistency of semiparametric Poisson regression:
VoS N 1
p=argmax+> y B'x, —e’ —logy,!
B n=1

e First order condition:

N

0= ﬁzxn,k (yn o e,B'Xn)

n=1
e In large samples:
0=E[X,, (¥, —&" )] = E[x, E[(y, - ") | x,]] = E[x,, (** ) | x,]]

e Hence, S—2® 5 3 as long as conditional mean is correctly

specified (even if Poisson assumption does not hold)
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Nonproportional Dispersion in Count Models

What about standard errors?
Define w(y,,x;8)=Yy.8'x —e’* —logy,!
Taylor expansion argument:
IN(B-5,)—=>N(0,QVQ™)
where,
Q=Elyy (Vo i fo)l,  V =Var(y,(¥,. %,: 5))
If MLE assumptions hold, Q =-V

If not, must use “sandwich” estimator, i.e. robust se’s
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Nonproportional Dispersion in Count Models

e Implementation:
e In stata: “poisson y x1 x2, robust”
e Inr, use sandwich package:
= “oml <- gim(Y ~ X1 + X2,family="poisson”)”

= “swl <- sandwich(pm1)”
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Nonproportional Dispersion in Count Models

e What we get:
e Robustness to overdispersion
» Robustness to zero-inflation, zero-truncation, one inflation, etc.
o All we need is correctly specified conditional mean
e What we don'’t get
o Efficiency (MLE is more efficient if parametric model is correct)

o Predicted values easily generated, but not predicted distribution
(since distribution is not Poisson)

o If we want predicted values, we can use procedures discussed In
lecture 3
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Nonproportional Dispersion in Count Models

e Same principal extends to negative binomial model

e Same principal extends to other exponential family models (i.e.
consistency holds as long as conditional mean is correctly specified)

e “ robust” does not provide any benefit for logit, probit, ordered logit,
multinomial logit, etc.:

o These models are only correct if parametric model is correct

o If parametric model is correct, se’s = robust se’s in large samples
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Time Series Dependence in the Linear Model

e Semiparametric Time Series Linear Model:
1.y, =p4,"% +¢& (linearity)
2. e areihdependent (X ,¢,) are stationary and ergodic
3. E[xx ] has full rank (identification)
4. Eleg | x]=0
5o —N{B-02){ cedastic I ity
e Consider OLS as semiparametric estimator

e Under 1-4, OLS is unbiased, rermally-distributed, consistent, and
asymptotically normal; the-information-equality-holds; OLS-is-efficient
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Time Series Dependence in the Linear Model

t=1

R T roa
OLS estimator: 5= g, {%Z X, X, } FZ xtgt}
t=1

OLS is unbiased: E[Z|x] = 5, {%i X X, } Fi E[xtgt]} =0

t=1 =0

.
Under stationarity and ergodicity, £ > x.&, —2®>E[x£,]=0
t=1

Hence, OLS is consistent
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Time Series Dependence in the Linear Model

e Large sample distribution:

JT(B-5,) = {%thxt} {%ZX@}

4 LLN I CLT

]
E[Xt:)é‘ T N [O’T“LQVM (%; thtD
=V

JT(B- )25 NQVQ™)
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Time Series Dependence in the Linear Model

.
e Tricky part is estimating V = limVar (AZ thtj

T—>oo

e If x.& are independent, then
T T T
Var(%thet}%Z Ele," %% 154 & %X
t=1 t=1 t=1
e If x.& not independent, then covariance terms make it hard

T T
Var E%Z gtj =1 Var(xe)+2 ) Cov(xe, x.e,

t=1 t=1 s<t
e Newey-West (and related procedures) provide a way to estimate

>
i 1
limVar (FZ gtj

t=1
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Time Series Dependence in the Linear Model

Define,

T
7,/\(8) = T—ls—l Z gtgt—sxtxt—s |

t=s+1

and estimate,

V =7(0)+ 1-72)[7(s) +7(5) ]
s=1
Select m; suchthat m; >0 as T -

Automatic procedures for choosing m. efficiently are available

Rule of thumb is m, = L4( I )2/9J

100

Newey-West is special case of spectral density approach to
covariance matrix estimation (w/ a Bartlett Kernel)
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Time Series Dependence in the Linear Model

e What we get:
e Robustness to heteroskedasticity and autocorrelation

e No need to select appropriate ARMA model (there is some
bandwidth selection going on in the background, but this part is
largely automated)

e What we lose:

o Efficiency: If correct ARMA model is selected, then MLE will be
more efficient
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Time Series Dependence in Nonlinear Models

e Newey-West standard errors can be used to correct for time series
dependence in nearly any nonlinear model

e For many nonlinear models, incorporating time series dependence is
extremely difficult

e Parametric time-series versions of standard estimators cannot be
estimated in most (or even all?) statistical packages

o Time series logit, time series probit, time series count, etc.
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Time Series Dependence in Nonlinear Models

e Binomial Probit with AR1 errors (parametric model)

1. y*=p0'%x+¢, Y, =y * =0} (probit model)

2. & =p&+U, U ~N(0,1), u, areiid (AR1 errors)
e MLE involves complicated T -dimensional integral

o Define A(y,,...¥;)={x:x €[0,0) if y, =1, x. € (-,0] if y, =0}

|s—t|

.Mmm=ﬂmﬂﬁm=£p

(810 5).2p))d8

e Really hard to compute! (stata/r don’t do it right now)

° Pr(yl,---!yT;ﬂ’p)ZIQEA(Yl

..... yT
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Time Series Dependence in Nonlinear Models

e Alternative approach: semiparametric estimation

e Claim (Poirier and Ruud, 1986): Probit is still consistent when
observations are dependent

e Why?

~ T
e MLE is § =argmax< ) log f (y,;6)
0 t=1

.
e MSE is consistent because %Zlog f(y,;8) — E[log f (y,;0)]
t=1

e Information inequality implies E[log f (y,;#)] is minimized at 6,,
the “true” parameter value

 Information inequality will continue to hold for all models that
have the same marginals
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Time Series Dependence in Nonlinear Models

e Hence, we can apply Newey-West standard errors to probit to obtain
consistent estimates with corrects standard errors

e Same result holds for other models:

e Parametric Poisson models w/ time series dependence are
difficult to obtain

e In Poisson case, using Newey West standard errors give
estimator that is robust to over/under dispersion, zero-inflation,
and time series dependence
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Time Series Dependence in Nonlinear Models

e Implementation (linear model):
e In stata, “newey y x1 x2, lag(#)”
e Inr, sandwich package:
e “Iml <- Im(Y ~ X1 + X2)”
e “swl <- NeweyWest(Iml)”
e Implementation (nonlinear models):
e |n stata, using nwest package
e Inr, sandwich package:
e “glml <- gim(Y ~ X1 + X2 ,family="poisson”)”
e “swl <- NeweyWest (gim1)”
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Time/Group Dependence in Panel Data

e Semiparametric Linear Panel Data Model (short panels with many
iIndividuals):

1.y, =B'%t&,, (inear model)

2. Ele, [X%,.]=0

3. E[X,X,,] has full rank (identification)

4. (&,1,--€,7) are independent over n (independence)

e OLS estimator:

N T -1 N T

[ﬁzzmwﬁ[ﬁzzmaj
n=l t=1 =1

_ -_1r —

T
! 1
Z Xn,t Xn,t N

M=
7~ N\
==

-
3><
i
N
Il
=
_|_
1
ZIH
[]=
N
>
L 1
AR
ZIH
[]=
L
I
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Time/Group Dependence in Panel Data

e OLS is unbiased: E[,5’| X] =,

N
e OLS is consistent since, +» o, —*—0

n=1

e If X, are independent over n and t, then sandwich estimator
provides correct standard errors

e Otherwise,

N T N

N T
Var [ﬁzz Xn,tgn,t] = ﬁzzvar(xn,t‘gn,t) T N_ZTZZCOV(Xn,tgn,t ' Xn,sgn,s)
1 t=1

n= n=l t=1 n=1 s<t
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Time/Group Dependence in Panel Data

o Alternatively,

Fom- 3] [s3a

v l
N(0Elz,]Var(@,)E[z,]")  Elz,]  N(OVar(e,))

e Notice that this will not work with small-long panels since LLN in N
will not kick it

e As long as w, are independent, variance estimator is accurate (does
not require any assumption about time-series dependence)

e Clustering will not control for a common time effect
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Time/Group Dependence in Panel Data

e Same principal holds if two-way structure is not individuals/time, but
individuals/groups (e.g. countries, states)

B=ﬂo+{éi{ﬁixg,ixg,i H éi{% ] “H

g=1 i=1

\/E(Ié_ﬂo) — I:éi{% _ Xg,ng,i } I:%Z{ﬁ _g Xg,igg,i}:l
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Time/Group Dependence in Panel Data

e Suppose there Is a group effect, ¢,; =u, +¢&,;, U, and & ; are iid and
Independent of each other

e (l.e. Individuals in different countries, u, representing a country
effect, possibly due to omitted country variables)

o If group (e.g. country) fixed effects are excluded, must cluster
o If group fixed effects are included, no need to cluster

e If country fixed effects are omitted, then clustering deals with within
country correlation (as long as x_; and u, are not dependent, in

which case OLS w/out fixed effects is inconsistent)
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Time/Group Dependence in Panel Data

e Implementation:

e In stata, “regress y x1 x2, cluster(ind)”
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Example: Monthly Terror Attacks in Israel

e Number of Israelis Killed:

140

120
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20 N\/\N
0
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Example: Monthly Terror Attacks in Israel

e Number of Israelis Killed:

70
Series: KILLED
60 Sample 2000M01 2010M03
Observations 123
50
Mean 10.00813
40 Median 5.000000
Maximum 130.0000
30. Minimum 0.000000
Std. Dev. 15.73265
20 Skewness 4.160091
Kurtosis 29.29346
10- Jarque-Bera  3897.928
Probability 0.000000
0- L LA s S e

0 20 40 60 80 100 120
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Example: Monthly Terror Attacks in Israel

e Control for:
e Election period (3 months leading up to Israeli election)
e Post peace summit (6 months following peace summit)

» Right-wing Israeli prime-minister
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Example: Monthly Terror Attacks in Israel

e Linear Model in stata:

e Calculate by hand, m, =4

o Naive standard errors, “regress killed killed_m1 elec postsummit
rightpm”

e Robust standard errors, “regress killed killed _m1 elec
postsummit rightpm, robust”

o Newey-West standard errors “newey killed killed_m1 elec
postsummit rightpm, lag(4)”
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Example: Monthly Terror Attacks in Israel

e Poisson Model in r:

m, calculated automatically

“mod1 <- gim(killed ~ killed_m1 + elec + postsummit +
rightpm,family="poisson",data=xls1)”

“coef <- summary(mod1)$coefficients[1:5,1]"
“sel <- summary(mod1l)$coefficients[1:5,2]"
“se2 <- sqrt(diag(sandwich(mod1)))”

“se3 <- sqrt(diag(NeweyWest(mod1)))”



