Semiparametric and Nonparametric Methods in Political Science

Lecture 1: Semiparametric Estimation

Michael Peress, University of Rochester and Yale University

- Parametric Model: statistical model characterized by finite dimensional unknown parameter
 - $y_n \sim N(\mu, \sigma^2)$
 - $y_n \sim N(\beta' x_n, \sigma^2)$ (normal-linear model)
- Nonparametric Model: statistical model characterized by infinite dimensional unknown parameter
 - $y_n \sim f$ where f is unknown (density estimation)
 - $y_n = g(x_n) + \varepsilon_n$, $E[\varepsilon_n | x_n] = 0$ (nonparametric regression)

- <u>Semiparametric Model</u>: statistical model characterized by finite dimensional parameter of interest and infinite dimensional "nuisance" parameter
 - $y_n = \beta' x_n + \varepsilon_n$, $\varepsilon_n | x_n \sim F(\varepsilon | x)$ with $E[\varepsilon_n | x_n] = 0$ (semiparametric linear model)
 - β is "parameter of interest"
 - F is a nuisance parameter
 - $y_t = \beta' x_t + \varepsilon_t$, (x_t, ε_t) is stationary and ergodic and $E[\varepsilon_t | x_t] = 0$
 - β is "parameter of interest"
 - Stochastic process characterizing (x_t, ε_t) is a nuisance parameter

- More Semiparametric/Nonparametric Models:
 - $y_n = g(\beta' x_n) + \varepsilon_n$, $\varepsilon_n | x_n \sim F(\varepsilon | x)$ with $E[\varepsilon_n | x_n] = 0$ (linear index model)
 - $y_n = g(x_n) + \beta' z_n + \varepsilon_n$, $\varepsilon_n | x_n \sim F(\varepsilon | x)$ with $E[\varepsilon_n | x_n] = 0$ (partially linear model)
 - $Pr(y_n = 1) = G(\beta' x_n)$ (semiparametric binary choice)

- Parametric Models:
 - MLE is efficient if parametric model is correct
 - MLE is often inconsistent if parametric model is incorrect
 - \sqrt{N} -convergence rate
- Nonparametric Models:
 - More generality, but...
 - Theory more difficult
 - Implementation difficult
 - Slower convergence (slower than parametric rate of \sqrt{N})
 - Efficiency loss (relative to MLE if parametric model is corr.)

- Semiparametric Models:
 - More generality, and...
 - Often, \sqrt{N} -convergence for parameter of interest
 - Often, easy to implement
 - Often, little efficiency loss
 - Theory can be very hard, but some important cases are sufficiently worked out so that we don't have to worry about it
- Lecture 1 will focus on easy but powerful semiparametric estimators
- Lecture 2 will focus on basics of nonparametric estimation
- Lecture 3 will focus on applications of nonparametric estimators and more advanced semiparametric estimators

- Examples of "Easy" Semiparametric Estimators:
 - OLS w/ robust se's semiparametric because OLS is consistent even if error terms are non-normal and heteroskedastic
 - Poisson regression w/ robust se's semiparametric because estimator is consistent when dependent variable is not Poisson distributed
 - Linear-nonlinear models w/ Newey-West se's semiparametric because OLS/MLE are consistent even when dependent variable exhibits time series dependence
 - Short panels with clustered standard errors semiparametric because OLS/MLE are consistent even when dependent variable exhibits group correlation/time series dependence

- Why Use These Semiparametric Estimators?
 - Easy to apply:
 - Some parametric alternatives are VERY computationally intensive
 - Skip the specification step (which is sometimes near impossible)
 - Modeling heteroskedasticity
 - Selecting ARMA structure (w/ time series and panel data)
 - Selecting between negative binomial, zero-inflated, zerotruncated, etc., in count models

- Drawbacks:
 - Efficiency loss relative to parametric model
- However:
 - Parametric model may be wrong!
 - Usually, semiparametric estimators achieve semiparametric efficiency bounds (they are efficient under maintained assumptions)
 - Often, not much efficiency loss
 - Often, these semiparametric estimators give robustness practically "for free" since we don't have to estimate the nuisance parameters

- Parametric Linear Model:
 - 1. $y_n = \beta_0 ' x_n + \varepsilon_n$ (linearity)
 - **2.** (x_n, ε_n) are independent (independence)
 - **3.** $E[x_n x_n]$ has full rank (identification)
 - **4.** $E[\varepsilon_n \mid x_n] = 0$
 - **5.** $\varepsilon_n \sim N(0, \sigma^2)$ (homoskedasticity and normality)
- Under 1-5, OLS is MLE; OLS is unbiased, normally distributed, consistent, and asymptotically normal; the information equality holds; and OLS is efficient

- Semiparametric Linear Model:
 - 1. $y_n = \beta_0 'x_n + \varepsilon_n$ (linearity)
 - 2. (x_n, ε_n) are independent (independence)
 - **3.** $E[x_n x_n]$ has full rank (identification)
 - **4.** $E[\varepsilon_n \mid x_n] = 0$
 - **5.** $\varepsilon_n \sim N(0, \sigma^2)$ (homoskedasticity and normality)
- Consider OLS as semiparametric estimator
- Under 1-4, OLS is unbiased, normally distributed, consistent, and asymptotically normal; the information equality holds; and OLS is efficient

Properties of OLS as semiparametric estimator:

$$\hat{\beta} = \left[\frac{1}{N}\sum_{n=1}^{N} x_n x_n'\right]^{-1} \left[\frac{1}{N}\sum_{n=1}^{N} x_n y_n\right] = \beta_0 + \left[\frac{1}{N}\sum_{n=1}^{N} x_n x_n'\right]^{-1} \left[\frac{1}{N}\sum_{n=1}^{N} x_n \varepsilon_n\right]$$

By law of iterated expectations,

$$E[x_n \varepsilon_n] = E[x_n E[\varepsilon_n | x_n]] = 0$$

OLS is unbiased:

$$E[\hat{\beta} \mid x] = \beta_0 + \left[\frac{1}{N} \sum_{n=1}^{N} x_n x_n'\right]^{-1} \left[\frac{1}{N} \sum_{n=1}^{N} E[x_n \varepsilon_n]\right] = \beta_0$$

OLS is consistent:

$$\frac{1}{N} \sum_{n=1}^{N} x_n \mathcal{E}_n \xrightarrow{prob.} E[x_n \mathcal{E}_n] = 0$$

$$\hat{\beta} = \beta_0 + \left[\frac{1}{N} \sum_{n=1}^{N} x_n x_n'\right]^{-1} \left[\frac{1}{N} \sum_{n=1}^{N} x_n \mathcal{E}_n\right] \xrightarrow{prob.} \beta_0 + \left[\frac{1}{N} \sum_{n=1}^{N} x_n x_n'\right]^{-1} 0 = \beta_0$$

Normality/homoskedasticity not needed for these results

OLS is asymptotically normal:

$$\sqrt{N}(\hat{\beta} - \beta_0) = \begin{bmatrix} \frac{1}{N} \sum_{n=1}^{N} x_n x_n \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{\sqrt{N}} \sum_{n=1}^{N} x_n \varepsilon_n \end{bmatrix} \\
\downarrow LLN \qquad \downarrow CLT \\
E[x_n x_n']^{-1} \qquad N(0, Var(x_n \varepsilon_n)) \\
\sqrt{N}(\hat{\beta} - \beta_0) \xrightarrow{dist.} N(0, E[x_n x_n']^{-1} Var(x_n \varepsilon_n) E[x_n x_n']^{-1}) \\
bread bread bread$$

Estimate asymptotic distribution using:

$$E[x_n x_n']^{-1} \approx \frac{1}{N} \sum_{n=1}^N x_n x_n'$$

$$Var(x_n \varepsilon_n) = E[\varepsilon_n^2 x_n x_n'] \approx \frac{1}{N} \sum_{n=1}^N \varepsilon_n^2 x_n x_n'$$

- Implementation:
 - In stata, "regress y x1 x2, robust"
 - In r, use sandwich package:
 - "Im1 <- Im(Y ~ X1 + X2)"
 - "sw1 <- sandwich(lm1)"</p>

- Overview:
 - Apply OLS when homoskedasticity/normality do not hold
 - Benefit: robustness
 - Drawback: less efficiency

Example:

- OLS is MLE when errors are normal and homoskedastic
- LAD is MLE when errors are double exponential and homoskedastic
- OLS will be more efficient than LAD when errors are normal and homoskedastic, robust se's will be correct for both estimators
- LAD will be more efficient than OLS when errors are double exponential and homoskedastic, robust se's will be correct for both estimators

• Example Continued:

 Generate 1000 Monte Carlo data sets with N=500, X1~N(0,1), $X2\sim N(0,1)$, Beta=(-.5,1.5,-1.0), and errors either N(0,1) or DExp(0,1)

	DGP = Normal-Linear			DGP = DExp-Linear		
	Beta1	Beta2	Beta3	Beta1	Beta2	Beta3
Rel. Eff. OLS/LAD	0.81	0.80	0.82	1.31	1.37	1.28
OLS Overconfidence	1.06	1.04	1.05	0.97	1.02	1.02
LAD Overconfidence	1.04	1.04	1.02	0.98	0.98	1.04
OLS se / LAD se	0.89	0.89	0.89	1.15	1.15	1.15

Parametric Poisson Model:

1.
$$y_n \sim Poisson(\lambda_n)$$
, $\lambda_n = e^{\beta_0' x_n}$

- 2. (y_n, x_n) are iid
- Notice that $E[y_n | x_n] = Var(y_n | x_n) = \lambda_n = e^{\beta_0' x_n}$
- We can derive the log-likelihood function:

$$l(y, x; \beta) = \sum_{n=1}^{N} y_n \beta' x_n - e^{\beta' x_n} - \log y_n!$$

Semiparametric Poisson Model:

1.
$$y_n \sim Poisson(\lambda_n), \lambda_n = e^{\beta_0' x_n} E[y_n \mid x_n] = e^{\beta_0' x_n}$$

- 2. (y_n, x_n) are iid
- Semiparametric estimator defined by:

$$\hat{\beta} = \arg\max_{\beta} \frac{1}{N} \sum_{n=1}^{N} y_n \beta' x_n - e^{\beta' x_n} - \log y_n!$$

Consistency of semiparametric Poisson regression:

$$\hat{\beta} = \arg\max_{\beta} \frac{1}{N} \sum_{n=1}^{N} y_n \beta' x_n - e^{\beta' x_n} - \log y_n!$$

First order condition:

$$0 = \frac{1}{N} \sum_{n=1}^{N} x_{n,k} (y_n - e^{\hat{\beta}' x_n})$$

In large samples:

$$0 = E[x_{n,k}(y_n - e^{\hat{\beta}'x_n})] = E[x_{n,k}E[(y_n - e^{\hat{\beta}'x_n}) | x_n]] = E[x_{n,k}(e^{\beta_0'x_n} - e^{\hat{\beta}'x_n}) | x_n]]$$

• Hence, $\hat{\beta} \xrightarrow{prob.} \beta_0$ as long as conditional mean is correctly specified (even if Poisson assumption does not hold)

- What about standard errors?
- Define $\psi(y_n, x_n; \beta) = y_n \beta' x_n e^{\beta' x_n} \log y_n!$
- Taylor expansion argument:

$$\sqrt{N}(\hat{\beta} - \beta_0) \xrightarrow{dist.} N(0, Q^{-1}VQ^{-1})$$

where,

$$Q = E[\psi_{\beta\beta}(y_n, x_n; \beta_0)], \qquad V = Var(\psi_{\beta}(y_n, x_n; \beta_0))$$

- If MLE assumptions hold, Q = -V
- If not, must use "sandwich" estimator, i.e. robust se's

- Implementation:
 - In stata: "poisson y x1 x2, robust"
 - In r, use sandwich package:
 - "pm1 <- glm(Y ~ X1 + X2,family="poisson")"</p>
 - "sw1 <- sandwich(pm1)"</p>

- What we get:
 - Robustness to overdispersion
 - Robustness to zero-inflation, zero-truncation, one inflation, etc.
 - All we need is correctly specified conditional mean
- What we don't get
 - Efficiency (MLE is more efficient if parametric model is correct)
 - Predicted values easily generated, but not predicted distribution (since distribution is not Poisson)
 - If we want predicted values, we can use procedures discussed in lecture 3

- Same principal extends to negative binomial model
- Same principal extends to other exponential family models (i.e. consistency holds as long as conditional mean is correctly specified)
- ", robust" does not provide any benefit for logit, probit, ordered logit, multinomial logit, etc.:
 - These models are only correct if parametric model is correct
 - If parametric model is correct, se's = robust se's in large samples

- Semiparametric Time Series Linear Model:
 - 1. $y_t = \beta_0 ' x_t + \varepsilon_t$ (linearity)
 - 2. (x_t, ε_t) are independent (x_t, ε_t) are stationary and ergodic
 - 3. $E[x_t, x_t]$ has full rank (identification)
 - 4. $E[\varepsilon_t \mid x_t] = 0$
 - 5. $\varepsilon_t \sim N(0, \sigma^2)$ (homoskedasticity and normality)
- Consider OLS as semiparametric estimator
- Under 1-4, OLS is unbiased, normally distributed, consistent, and asymptotically normal; the information equality holds; OLS is efficient

- OLS estimator: $\hat{\beta} = \beta_0 + \left[\frac{1}{T}\sum_{t=1}^{T} x_t x_t'\right]^{-1} \left[\frac{1}{T}\sum_{t=1}^{T} x_t \mathcal{E}_t\right]$
- OLS is unbiased: $E[\hat{\beta} \mid x] = \beta_0 + \left[\frac{1}{T}\sum_{t=1}^{T}x_tx_t'\right]^{-1}\left[\frac{1}{T}\sum_{t=1}^{T}E[x_t\varepsilon_t]\right] = 0$
- Under stationarity and ergodicity, $\frac{1}{T}\sum_{t=1}^{T}x_{t}\varepsilon_{t} \xrightarrow{prob.} E[x_{t}\varepsilon_{t}] = 0$
- Hence, OLS is consistent

Large sample distribution:

$$\sqrt{T}(\hat{\beta} - \beta_0) = \begin{bmatrix} \frac{1}{T} \sum_{t=1}^{T} x_t x_t \end{bmatrix}^{-1} \qquad \begin{bmatrix} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} x_t \mathcal{E}_t \end{bmatrix} \\
\downarrow \qquad LLN \qquad \qquad \downarrow \qquad CLT \\
E[x_t x_t]^{-1} \qquad N \left(0, \lim_{T \to \infty} Var \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} x_t \mathcal{E}_t \right) \right) \\
= 0$$

$$\sqrt{T}(\hat{\beta} - \beta_0) \xrightarrow{dist.} N(Q^{-1}VQ^{-1})$$

- Tricky part is estimating $V = \lim_{T \to \infty} Var \left(\frac{1}{\sqrt{T}} \sum_{i=1}^{T} x_i \mathcal{E}_i \right)$
- If $x_t \varepsilon_t$ are independent, then

$$Var\left(\frac{1}{\sqrt{T}}\sum_{t=1}^{T}x_{t}\varepsilon_{t}\right) = \frac{1}{T}\sum_{t=1}^{T}E[\varepsilon_{t}^{2}x_{t}x_{t}'] \approx \frac{1}{T}\sum_{t=1}^{T}\varepsilon_{t}^{2}x_{t}x_{t}'$$

• If $x_t \mathcal{E}_t$ not independent, then covariance terms make it hard

$$Var\left(\frac{1}{\sqrt{T}}\sum_{t=1}^{T}x_{t}\varepsilon_{t}\right) = \frac{1}{T}\sum_{t=1}^{T}Var(x_{t}\varepsilon_{t}) + \frac{2}{T}\sum_{s < t}Cov(x_{t}\varepsilon_{t}, x_{s}\varepsilon_{s})$$

Newey-West (and related procedures) provide a way to estimate

$$\lim_{T\to\infty} Var\left(\frac{1}{\sqrt{T}}\sum_{t=1}^T x_t \mathcal{E}_t\right)$$

Define,

$$\hat{\gamma}(s) = \frac{1}{T-s-1} \sum_{t=s+1}^{T} \mathcal{E}_t \mathcal{E}_{t-s} x_t x_{t-s}$$

and estimate,

$$\hat{V} = \hat{\gamma}(0) + \sum_{s=1}^{m_T} (1 - \frac{s}{m_T + 1}) [\hat{\gamma}(s) + \hat{\gamma}(s)']$$

- Select m_T such that $m_T \to \infty$ as $T \to \infty$
- Automatic procedures for choosing m_T efficiently are available
- Rule of thumb is $m_T = \left| 4 \left(\frac{T}{100} \right)^{2/9} \right|$
- Newey-West is special case of spectral density approach to covariance matrix estimation (w/ a Bartlett Kernel)

- What we get:
 - Robustness to heteroskedasticity and autocorrelation
 - No need to select appropriate ARMA model (there is some bandwidth selection going on in the background, but this part is largely automated)
- What we lose:
 - Efficiency: If correct ARMA model is selected, then MLE will be more efficient

- Newey-West standard errors can be used to correct for time series dependence in nearly any nonlinear model
- For many nonlinear models, incorporating time series dependence is extremely difficult
- Parametric time-series versions of standard estimators cannot be estimated in most (or even all?) statistical packages
 - Time series logit, time series probit, time series count, etc.

- Binomial Probit with AR1 errors (parametric model)
 - 1. $y_t^* = \beta' x_t + \varepsilon_t$, $y_t = 1\{y_t^* \ge 0\}$ (probit model)
 - 2. $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$, $u_t \sim N(0,1)$, u_t are iid (AR1 errors)
- MLE involves complicated T-dimensional integral
 - Define $A(y_1,...,y_T) = \{x : x_t \in [0,\infty) \text{ if } y_t = 1, x_t \in (-\infty,0] \text{ if } y_t = 0\}$
 - $\mu_t(x;\beta) = \beta'x_t$, $\Omega_{s,t}(\rho) = \frac{\rho^{|s-t|}}{1-\rho}$
 - $\Pr(y_1, ..., y_T; \beta, \rho) = \int_{\beta \in A(y_1, y_2)} \phi(\beta; \mu(x; \beta), \Omega(\rho)) d\beta$
- Really hard to compute! (stata/r don't do it right now)

- Alternative approach: semiparametric estimation
- Claim (Poirier and Ruud, 1986): Probit is still consistent when observations are dependent
- Why?
 - MLE is $\hat{\theta} = \arg\max_{\theta} \frac{1}{T} \sum_{t=1}^{T} \log f(y_t; \theta)$
 - MSE is consistent because $\frac{1}{T} \sum_{t=1}^{T} \log f(y_t; \theta) \rightarrow E[\log f(y_t; \theta)]$
 - Information inequality implies $E[\log f(y_t; \theta)]$ is minimized at θ_0 , the "true" parameter value
 - Information inequality will continue to hold for all models that have the same marginals

- Hence, we can apply Newey-West standard errors to probit to obtain consistent estimates with corrects standard errors
- Same result holds for other models:
 - Parametric Poisson models w/ time series dependence are difficult to obtain
 - In Poisson case, using Newey West standard errors give estimator that is robust to over/under dispersion, zero-inflation, and time series dependence

- Implementation (linear model):
 - In stata, "newey y x1 x2, lag(#)"
 - In r, sandwich package:
 - "lm1 <- lm(Y ~ X1 + X2)"
 - "sw1 <- NeweyWest(Im1)"
- Implementation (nonlinear models):
 - In stata, using nwest package
 - In r, sandwich package:
 - "glm1 <- glm(Y ~ X1 + X2,family="poisson")"
 - "sw1 <- NeweyWest (glm1)"

- Semiparametric Linear Panel Data Model (short panels with many individuals):
 - 1. $y_{n,t} = \beta' x_{n,t} + \varepsilon_{n,t}$ (linear model)
 - $2. E[\varepsilon_{nt} | x_{nt}] = 0$
 - 3. $E[x_{n,t}x_{n,t}]$ has full rank (identification)
 - 4. $(\varepsilon_{n,1},...,\varepsilon_{n,T})$ are independent over n (independence)
- OLS estimator:

$$\hat{\beta} = \beta_0 + \left[\frac{1}{NT} \sum_{n=1}^{N} \sum_{t=1}^{T} x_{n,t} x_{n,t} \right]^{-1} \left[\frac{1}{NT} \sum_{n=1}^{N} \sum_{t=1}^{T} x_{n,t} \mathcal{E}_{n,t} \right]$$

$$= \beta_0 + \left[\frac{1}{N}\sum_{n=1}^N \left(\frac{1}{T}\sum_{t=1}^T x_{n,t} x_{n,t}'\right)\right]^{-1} \left[\frac{1}{N}\sum_{n=1}^N \left(\frac{1}{T}\sum_{t=1}^T x_{n,t} \varepsilon_{n,t}\right)\right] = \beta_0 + \left[\frac{1}{N}\sum_{n=1}^N z_n\right]^{-1} \left[\frac{1}{N}\sum_{n=1}^N \omega_n\right]$$

$$= \omega_n$$

- OLS is unbiased: $E[\hat{\beta} \mid x] = \beta_0$
- OLS is consistent since, $\frac{1}{N}\sum_{n=1}^{N}\omega_{n} \xrightarrow{prob.} 0$
- If $x_{n,t}$ are independent over n and t, then sandwich estimator provides correct standard errors
- Otherwise,

$$Var\left(\frac{1}{\sqrt{NT}}\sum_{n=1}^{N}\sum_{t=1}^{T}x_{n,t}\varepsilon_{n,t}\right) = \frac{1}{NT}\sum_{n=1}^{N}\sum_{t=1}^{T}Var(x_{n,t}\varepsilon_{n,t}) + \frac{2}{NT}\sum_{n=1}^{N}\sum_{s< t}Cov(x_{n,t}\varepsilon_{n,t}, x_{n,s}\varepsilon_{n,s})$$

Alternatively,

$$\sqrt{N}(\hat{\beta} - \beta_0) = \begin{bmatrix} \frac{1}{N} \sum_{n=1}^{N} z_n \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \omega_n \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$N(0, E[z_n]^{-1} Var(\omega_n) E[z_n]^{-1}) \qquad E[z_n] \qquad N(0, Var(\omega_n))$$

$$Var(\omega_n) \approx \frac{1}{N} \sum_{n=1}^{N} \omega_n \omega_n ' = \frac{1}{N} \sum_{n=1}^{N} \begin{bmatrix} \frac{1}{T} \sum_{t=1}^{T} x_{n,t} \varepsilon_{n,t} \end{bmatrix} \begin{bmatrix} \frac{1}{T} \sum_{t=1}^{T} x_{n,t} \varepsilon_{n,t} \end{bmatrix} '$$

- Notice that this will not work with small-long panels since LLN in N will not kick it
- As long as ω_n are independent, variance estimator is accurate (does not require any assumption about time-series dependence)
- Clustering will not control for a common time effect

 Same principal holds if two-way structure is not individuals/time, but individuals/groups (e.g. countries, states)

$$\hat{\beta} = \beta_0 + \left[\frac{1}{G} \sum_{g=1}^{G} \left\{ \frac{1}{I_g} \sum_{i=1}^{I_g} x_{g,i} x_{g,i}' \right\} \right]^{-1} \left[\frac{1}{G} \sum_{g=1}^{G} \left\{ \frac{1}{I_g} \sum_{i=1}^{I_g} x_{g,i} \mathcal{E}_{g,i} \right\} \right]$$

$$\sqrt{G}(\hat{\beta} - \beta_0) = \left[\frac{1}{G} \sum_{g=1}^{G} \left\{ \frac{1}{I_g} \sum_{i=1}^{I_g} x_{g,i} x_{g,i}' \right\} \right]^{-1} \left[\frac{1}{\sqrt{G}} \sum_{g=1}^{G} \left\{ \frac{1}{I_g} \sum_{i=1}^{I_g} x_{g,i} \varepsilon_{g,i} \right\} \right]$$

- Suppose there is a group effect, $\varepsilon_{g,i} = u_g + \xi_{g,i}$, u_g and $\xi_{g,i}$ are iid and independent of each other
 - (i.e. individuals in different countries, u_g representing a country effect, possibly due to omitted country variables)
 - If group (e.g. country) fixed effects are excluded, must cluster
 - If group fixed effects are included, no need to cluster
- If country fixed effects are omitted, then clustering deals with within country correlation (as long as $x_{\mathrm{g},i}$ and u_{g} are not dependent, in which case OLS w/out fixed effects is inconsistent)

- Implementation:
 - In stata, "regress y x1 x2, cluster(ind)"

Number of Israelis Killed:

• Number of Israelis Killed:

Series: KILLED Sample 2000M01 2010M03 Observations 123				
Mean	10.00813			
Median	5.000000			
Maximum	130.0000			
Minimum	0.000000			
Std. Dev.	15.73265			
Skewness	4.160091			
Kurtosis	29.29346			
Jarque-Bera	3897.928			
Probability	0.000000			

- Control for:
 - Election period (3 months leading up to Israeli election)
 - Post peace summit (6 months following peace summit)
 - Right-wing Israeli prime-minister

- Linear Model in stata:
 - Calculate by hand, $m_T = 4$
 - Naïve standard errors, "regress killed killed_m1 elec postsummit rightpm"
 - Robust standard errors, "regress killed killed_m1 elec postsummit rightpm, robust"
 - Newey-West standard errors "newey killed killed_m1 elec postsummit rightpm, lag(4)"

- Poisson Model in r.
 - *m_T* calculated automatically
 - "mod1 <- glm(killed ~ killed_m1 + elec + postsummit + rightpm,family="poisson",data=xls1)"
 - "coef <- summary(mod1)\$coefficients[1:5,1]"
 - "se1 <- summary(mod1)\$coefficients[1:5,2]"
 - "se2 <- sqrt(diag(sandwich(mod1)))"
 - "se3 <- sqrt(diag(NeweyWest(mod1)))"