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Overview of Density Estimation 
 
• Nonparametric Model: statistical model characterized by infinite 

dimensional unknown parameter 

• ~ny f  where f  is unknown (density estimation) 

• ( )n n ny g x ε= + , [ | ] 0n nE xε =  (nonparametric regression) 

• Pr( 1) ( )n ny G x= =  (nonparametric binary choice) 

 

• Unlike the “easy” semiparametric estimators we covered in Lecture 
1, the nonparametric and semiparametric estimators we study in 
Lecture 3 will be “hard”’ 

• Lecture 2 provides the background for these problem by studying 
one problem- density estimation using kernel methods- in great detail 
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Overview of Density Estimation 
 

• Kernel techniques generalize to problems beyond density estimation 

• What we learn about nonparametric problems from kernel 
techniques generalize to alternative estimators such as: 

• k-nearest neighbor estimators (also called “matching” estimators) 

• Smoothing splines 

• Sieve estimators (estimation using orthogonal functions such as 
polynomials or Fourier series) 

• Histogram estimators (for density estimation) 
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Kernel Density Estimation 
 
• The Density Estimation Problem: 

• We assume that 1{ }N
n nX =  are i.i.d. draws from a common 

distribution 0 ( )f x  

• The density estimation problem is the problem of estimating 
0 ( )f x  while placing only minimal restrictions on 0f  

• We would like to develop an estimator f̂  of the density 0f  
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Kernel Density Estimation 
 

• The Kernel Density Estimator (KDE) is defined by, 

( )1

1

ˆ ( ; ) n
N

X x
hN h

n

f x h K −

=

= ∑  

• Here, K  denotes the kernel and h  denotes the bandwidth 

• The Kernel satisfies: 
(i)    ( ) 0K u ≥  

(ii)   ( ) 1K u dx =∫  

(iii)   ( ) 0uK u du =∫  

(iv)   2 ( ) 0u K u du >∫  
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Kernel Density Estimation 
 

• Examples of Kernels: 
 

Name ( )K u  

Uniform 
1
2 , 1 1

( )
0,

u
K u

otherwise
− ≤ ≤⎧

= ⎨
⎩

 

Triangle 
1 | |, 1 1

( )
0,
u u

K u
otherwise

− − ≤ ≤⎧
= ⎨
⎩

 

Epanechnikov
23

4 (1 ), 1 1
( )

0, 0
u u

K u
⎧ − − ≤ ≤

= ⎨
⎩

Gaussian 
21

21
2

( ) uK u e
π

−=  
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Kernel Density Estimation 
 

• Example w/ N=10 Data Points – Rug Plot: 

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

fh
at
(x
)

 



Lecture 2: Density Estimation Page 7 
 

Kernel Density Estimation 
 

• Example w/ N=10 Data Points – Individual Kernels (h=.5): 
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Kernel Density Estimation 
 

• Example w/ N=10 Data Points – Density Estimate (h=.5): 
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Kernel Density Estimation 
 

• The bandwidth h controls the amount of smoothing 

• Large values of h denote a large degree of smoothing 

• Small values of h denotes a small degree of smoothing 
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Kernel Density Estimation 
 

• Example w/ N=10 Data Points – Density Estimate (h=1): 
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Kernel Density Estimation 
 

• Example w/ N=10 Data Points – Density Estimate (h=.2): 
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Kernel Density Estimation 
 

• Example w/ N=10 Data Points – Density Estimate (h=.2,.5, and 1): 
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Kernel Density Estimation 
 
• Example w/ N=200 Data Points – Density Estimate (h=.2,.5, and 1):  
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Kernel Density Estimation 
 

• Example: Dow Jones returns for the period 1/1/01 through 12/1/07, 
using kernel density estimators (with different bandwidths) and an 
estimated normal density 
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Kernel Density Estimation 
 

• Example: Positions of Senate incumbents (h=.3,.1, and 3) 
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Finite Sample Properties of KDEs 
 

• Bias: 

( )1
0 0

1

ˆ ˆ[ ( ; )] [ ( ; )] ( ) ( )n
N

X x
hN h

n

Bias f x h E f x h f x E K f x−

=

⎡ ⎤
= − = −⎢ ⎥⎣ ⎦

∑  

( ) ( )1 1
0 0

1

[ ] ( ) [ ] ( )n n
N

X x X x
hN h h h

n

E K f x E K f x− −

=

= − = −∑  

( )'1
0 0'
( ') ' ( )x x

h hx
K f x dx f x−⎡ ⎤= −⎣ ⎦∫  

• First part of the expression is a local weighted average, with 
weighting function ( )'1( ' | ) x x

h hw x x K −=  

• Small values of h  will mean that the weighting function will be 
concentrated around x , meaning that there will be little bias 

• Large values of h  means that we are counting values distant from x  
in the average, leading to large bias 
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Finite Sample Properties of KDEs 
 

• Variance: 

( ) ( )( )2
1 1

1

ˆ( ( ; )) n n
N

X x X x
hN h hh N

n

Var f x h Var K Var K− −

=

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑  

( ) ( )( )2

2
'1 1

0'
( ') 'nX xx x

h h hh N x
K E K f x dx−− ⎡ ⎤= − ⎣ ⎦∫  

• The 2h−  terms suggest that the variance decreases as h  increases 

• Intuitively, we are averaging a large number of quantities when h  is 
large, so we should expect the variance to decreases. 
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Finite Sample Properties of KDEs 
 

• Taylor series expansions give more precise characterization of bias 
and variance 

• Use change of variables y x
hu −=  

( )'1
0 0'

ˆ[ ( ; )] ( ') ' ( )x x
h hx

Bias f x h K f x dx f x−⎡ ⎤= −⎣ ⎦∫  

0 0( ) ( ) ( )
u
K u f x hu du f x= + −∫  

• Now, we will employ the fourth-order Taylor expansion, 

3

2 2 3 3 31 1
0 0 0 60 02( ) ( ) '( ) ''( ) '''( ) ( )

terms
smaller
than h

f x hu f x f x hu f x h u f x h u o h+ = + + + +  



Lecture 2: Density Estimation Page 19 
 

Finite Sample Properties of KDEs 
 

• Define 2
2 ( )

u
u K u duµ = ∫  and 2

2 ( )
u
K u duν = ∫  

• We have, 
ˆ[ ( ; )]Bias f x h

 
2 2 3 3

0
31 1

0 0 0 02 6( ) '( ) ''( ) '''(( )[ ) ]) ( )(
u
K u du f xf x f x hu f x h u f x h u o h+ + += −+∫  

2

2 21
0 02

1 0
0 ( ) ( ) '( ) ( ) ''( ) ( )

u u u
f x K u du hf x uK u du h f x u K u du

µ= = =

= + +∫ ∫ ∫  

0

3 3 31
0 06 '''( ) ( ) ( ) ( )

u
h f x u K u du f x o h

=

+ − +∫  

2 31
2 02 ''( ) ( )h f x o hµ= +  (bias goes to 0 as h  goes to 0) 
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Finite Sample Properties of KDEs 

 

• We can characterize the variance similarly, 
11

2 0
ˆ( ( ; )) ( ) ( )NhVar f x h f x O Nν −= +  (variance goes to 0 as Nh  goes to ∞ ) 
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Selecting the Bandwidth 
 

• Holding N  fixed, bias increases with h  while variance decreases 

• Select h  to minimize integrated mean-squared error, 
2ˆ ˆ ˆ( ( ; )) ( ( ; )) [ ( ; )]MSE f x h Var f x h Bias f x h= +  

2 4 2 1 51 1
2 0 2 04( ) ''( ) ( ) ( )Nh f x h f x O N o hν µ −= + + +  

4 2 2 1 51 1
2 2 04

ˆ( ; ) ''( ) ( ) ( )Nh x
IMSE f h h f x dx O N o hν µ −= + + +∫  

• Theoretical bandwidth that minimizes IMSE (obtained via FOC): 
1/5

1/52
2 2

2 0

*
''( )

x

h N
f x dx
ν

µ
−

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠∫
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Selecting the Bandwidth 
 

• Naturally, we would like ˆ( ; ) 0IMSE f h →  (which is a property weaker 
than consistency) 

• We require 0h →  and 0Nh →  as N →∞  

• *h  will clearly satisfy the three asymptotic conditions 

• This result tells us that rate at which to increase h  to obtain optimal 
results, but we still need a way to determine the constant 

• Notice that 2ν  and 2µ  can be computed easily 

• Must have estimate of 2
0 ''( )

x
f x dx∫  

• Estimating 0 ( )f x  requires estimating 2
0 ''( )

x
f x dx∫ ! 
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Selecting the Bandwidth 

 

• Constants Characterizing Asymptotic Distribution: 

Name ( )K u  2
2 ( )

u
u K u duµ = ∫ 2

2 ( )
u
K u duν = ∫

Uniform 
1
2 , 1 1

( )
0,

u
K u

otherwise
− ≤ ≤⎧

= ⎨
⎩

 1
3  1

2  

Triangle 
1 | |, 1 1

( )
0,
u u

K u
otherwise

− − ≤ ≤⎧
= ⎨
⎩

 1
6  2

3  

Epanech. 
23

4 (1 ), 1 1
( )

0, 0
u u

K u
⎧ − − ≤ ≤

= ⎨
⎩

1
5  3

5  

Gaussian 
21

21
2

( ) uK u e
π

−=  1 1
2 π
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Selecting the Bandwidth 
 

• Normal Reference Rule: 

• Compute 2
0 ''( )

x
f x dx∫  for some special density (in this case, 

normal) and apply it to our data 

• The normal reference rule involves assuming that 0 ( )f x  is the 
2( , )N µ σ  distribution 

• We have that 5
2 3

0 8
''( )

x
f x dx

σ π
=∫  

• Normal reference rule (or rule-of-thumb bandwidth) suggests, 
1/5

1/5 1/52
2

2

8
3

h N c Nν π σ σ
µ

− −⎛ ⎞
= =⎜ ⎟
⎝ ⎠  
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Selecting the Bandwidth 
 

• For the normal kernel, we can determine that ( )1/54
3 1.059c = ≈ , so 

that, 
1/51.059h Nσ −=  

• Other kernels will yield different constants. To estimate σ , we could 
use the variance of the data 

• Silverman (1986) suggests employing a robust estimator, 

0.75 0.25ˆ min{ ,1.34( )}s q qσ = −  

where 0.25q  and 0.75q  represent the 25 and 75% quantiles 
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Selecting the Bandwidth 
 

• Plug-In Method: 

• Estimate 2
0 ''( )

x
f x dx∫  rather than guessing it 

• Use normal reference rule to obtain an initial kernel density 
estimator, ˆ ( )f x  

• Then, we can use this to approximate 2
0 ''( )

x
f x dx∫  by taking a 

second numerical derivative of ˆ ( )f x  and integrating 

• We then re-estimate 0 ( )f x  using the new bandwidth. 

• More sophisticated approach: iterating the plug-in rule to 
convergence, or solving for h as a nonlinear system 

�
2

2 2
2 0

1/5

1/5

''( ) ( )
0

x
f x dx h

h Nν

µ

−
⎛ ⎞
⎜ ⎟− =
⎜ ⎟∫⎝ ⎠
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Selecting the Bandwidth 
 

• Cross Validation: 

• Obtain an estimate of the integrated mean-squared error as a 
function of h , and minimize it 

• The actual integrated mean squared error is, 
2

0
ˆ( ) ( ( ; ) ( ))

x
IMSE h f x h f x dx= −∫

 2 2
0 0

ˆ ˆ( ; ) ( ) 2 ( ; ) ( )
x x x

f x h dx f x dx f x h f x dx= + −∫ ∫ ∫  

• Estimate objective function using, 

( ) ( )2
1 1

( 1)
1 1 1

ˆ( ) ( ) 2n m n m
N N N

x x x x
h Nh N hN h

n m n m n

J h K K K− −
−

= = = ≠

= −∑∑ ∑∑o  

• Here, K Ko  denote the convolution of the kernel with itself and 
can be (tediously) computed analytically for a given choice of 
kernel 



Lecture 2: Density Estimation Page 28 
 

Selecting the Bandwidth 
 

• The expression ˆ( )J h  can then be numerically minimized to 
determine the cross validation bandwidth, CVh   

• One must be careful however, because if there are two data 
points such that n mX X= , then the cross validation function will 
have a minimum at 0 

• A solution is to use, 

( ) ( )2
1 1

( 1)
1 1 1

ˆ( ) ( ) 2n n m

m

m

n

N

x x

N N
x x x x

h Nh N hN h
n m n

J h K K K−
−

= = = ≠

−= −∑∑ ∑ ∑o  
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Selecting the Bandwidth 
 

• Dow Jones Returns Example continued: 

• We can determine that, 
1.371ROTh =   1.381PIh =   1.739CVh =  

 



Lecture 2: Density Estimation Page 30 
 

Selecting the Bandwidth 
 

• Senate Incumbent Positions example continued: 

• We can determine that, 
0.126ROTh =   0.050PIh =   0.063CVh =  
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Selecting the Kernel 
 

• Suppose that we plug the optimal bandwidth into the formula for the 
integrated mean squared error, 

( )1/ 5
2 2 / 5 2 4 / 5 15

2 24
ˆ( , ) ( ) ''( ) ( )

x
IMSE f h f x dx N o Nµ ν − −= +∫  

• The efficiency of the Kernel therefore depends on the constant 
2/5 4/5

2 2µ ν . 

• We can choose K  to solve the calculus of variations problem, 
minimize ( )IMSE K  subject to constraints based on (i) through (iv) 
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Selecting the Kernel 
 
 

Name 2µ  2ν  Relative 
Efficiency 

Uniform 1
3

1
2  1.060 

Triangle 1
6

2
3  1.011 

Epanechnikov 1
5

3
5  1.000 

Gaussian 1 1
2 π

 1.041 
 

• Epanechnikov kernel is the most efficient, but the choice of a kernel 
in practice does not seem to matter much 

• The effect of the kernel on mean-squared error is quite small. The 
popular normal kernel has an inefficiency of about 6%. 
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Selecting the Kernel 
 

• Senate Incumbent Positions example continued (h=PI): 

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

x

fh
at
(x
)

 
• Notice that of all the kernels, the Gaussian kernel is the only one that 

has full support 

• Full support is one reason that the Gaussian kernel is often chosen 
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Selecting the Kernel 
 

• Senate Incumbent Positions example continued (h=PI): 

• Warning: different Kernels require different bandwidths 

• In this case, normal=0.050, unif=0.035, triangular=0.103, 
Epanechnikov=0.087 
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Large Sample Properties of KDEs 
 

• Like most parametric estimators, kernel density estimators are 
consistent and asymptotically normal 

• They do, however, converge at a slower rate than parametric 
estimators 

• Recall that, 
11

2 0
ˆ( ( ; )) ( ) ( )NhVar f x h f x O Nν −= +  

• This implies that the estimator converges at the rate 1/ 2( )Nh −  rather 
than the usual 1/ 2N −  

• When an optimal bandwidth is selected, the convergence rate is 
2/5N − , which is of course slower that 1/ 2N −  
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Large Sample Properties of KDEs 
 

• Under the assumption that *h h= , we can show that the kernel 
density estimator is asymptotically normally distributed in the 
following sense, 

. 5 / 2 1/ 21
0 2 0 2 02

ˆ( ( ; ) ( )) ( ''( ) , ( ))disthN f x h f x N f x h N f xµ ν−− ⎯⎯→  

• Notice that the asymptotic distribution is not centered at zero 
because (by construction) the bias and variance are of the same 
magnitude 

• We can eliminate the bias term by over-smoothing, selecting 
1/5 kh cN − +=  where 0k >  

.
0 2 0

ˆ( ( ; ) ( )) (0, ( ))disthN f x h f x N f xν− ⎯⎯→  
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Inferences for KDEs 
 

• Two major approaches to conducting inferences for kernel density 
estimators – asymptotic formulas vs. the bootstrap 

• Inference based on asymptotic formulas: 

• Asymptotic distribution w/ optimal smoothing 
5/ 2 1/ 21

2 0 22
ˆ ˆ ˆ( ; ) ''( ) ( ) /f x h f x h N f x hNµ ν−− ±  

• Asymptotic distribution w/ under-smoothing 

2
ˆ ˆ( ; ) ( ) /f x h f x hNν±  
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Inferences for KDEs 
 

• Inference based on the bootstrap: 

• We sample S  draws, with replacement, form 1{ }N
n nX = . 

• To compute the 95% confidence interval of ˆ ( ; )f x h , we simply 
take the 2.5% and 97.5% quantiles of the empirical distribution 
ˆ ( ; )sf x h  
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Inferences for KDEs 
 

• Senate Incumbent Positions example continued (assymp. CI): 
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Inferences for KDEs 
 

• Senate Incumbent Positions example continued (bootstrap CI): 
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Higher Order Kernels 
 

• One can reduce the bias (and improve the convergence rate) of 
kernel density estimators by considering higher-order kernels 

• These are kernels that have more even moments which are zero (the 
odd moments are always zero) 

• This leads to more terms in the Taylor expansion canceling out 

• It also means that we require 0f  to have more derivatives in 
characterizing the asymptotic distribution 
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Higher Order Kernels 
 

• Properties of Higher Order Kernels: 

( ) 1 ( 1) 21 1
1 0( 1)!

1

( ) ( )n
N

x x r r r
rhN h r

n

Bias K h f x o hµ− + + +
++

=

⎡ ⎤
= +⎢ ⎥⎣ ⎦

∑  

( ) 11 1
2 0

1

( ) ( )n
N

x x
hN h Nh

n

Var K f x o Nν− −

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑  

2 2 2 2 ( 1) 2 1 2 31 1
2 1 0( 1)!( ) ( ) ( ( )) ( ) ( )r r r

rNh r x
IMSE h h f x dx o N o hν µ+ + − +

++= + + +∫  

1/(2 3)

1/(2 3)2
2 2 ( 1) 21

1 0( 1)!

*
(2 2)( ) ( ( ))

r

r
r

rr x

h N
r f x dx

ν
µ

+

− +
+

++

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠∫

 

• Notice that when 1r = , we have 1/5* ( )h O N −=  
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Higher Order Kernels 
 

• Next, notice that the order of the means square error is 
1 1 1 1/(2 3)( ) ( )ro N h o N− − − − +=  

• Notice that this goes to 1( )O N −  as r →∞ , meaning that if the space 
of functions is sufficiently smooth, then we approximate the 
parametric rate 
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Higher Order Kernels 
 

• Dow Jones Returns example continued: 
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Histogram Estimators 
 

• An alternative to kernel density estimators are histogram estimators 

• Let h  denote the bin size 

• Histogram estimator defined by, 

1

1 1
1{ ( 1) }, ( 1)ˆ ( ; )

0,

N m

nNh
n i

h i x hi h i x hi
f x h

otherwise
= =

⎧
− ≤ ≤ − ≤ ≤⎪= ⎨

⎪⎩

∑∑  

• Notice that, 
1

0 0 02
ˆ[ ( ; )] ( ( 1)) ( ) '( ) ( )Bias f x h f h i f x f h h o h= − − + +  for ( 1)h i x hi− ≤ ≤  

11
0 0

ˆ( ( ; )) ( ( 1))(1 ( ( 1)) ( )NVar f x h f h i f h i o N −= − − − +  for ( 1)h i x hi− ≤ ≤  
2 2 2 11

12
ˆ( ( ; )) '( ) ( ) ( )h

Nh x
IMSE f x h f x dx o h o N −= + + +∫  
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Histogram Estimators 
 

• Optimal bandwidth, 
1/3

1/3
2

6*
( '( ))N

x

h N
f x dx

−
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠∫

 

• Integrated mean squared error converges at rate 2/3N −  

• The above result indicates that the histogram estimator converges at 
a slower rate than the kernel density estimator, but notice that we 
require fewer derivatives 

• We can develop a parallel theory for histogram estimators that 
includes bin selection methods (including cross validation), 
asymptotic confidence intervals, etc. 
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Efficiency of Density Estimators 
 

• Theorem (stated loosely): Consider the class of pdfs ,m MF  such that 
the the mth derivative of 0f  exists and is bounded in total variation 
by M , 

( ) 2
, { : ( ( )) }m

m M x
f f x dx M= ∈ ≤∫F F

 
The optimal rate of convergence for the IMSE for any density 
estimator in this class is 2 /(2 1)m mN − +

 
 

• When 1m = , we have 2 /(2 1) 2 /3m mN N− + −= , a bound which the Histogram 
estimator achieves 

• When 2m = , we have 2 /(2 1) 4/5m mN N− + −= , a bound which the KDE 
achieves 

• When m = ∞, we have 1N − , which is the parametric rate 
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Multivariate Density Estimation 
 

• Consider now the problem of estimating a d -dimensional density 
0 ( )f x  

• Define the multivariate kernel density estimator to be, 

( ),1

1 1

ˆ ( ; ) n i i
d

dN
x x

hNh
n i

f x h K −

= =

= ∑∏  

• Bias: 

2 21
2 12

1

ˆ[ ( ; )] ''( ,..., ) ( )
d

d d
i

Bias f x h h f x x o hµ
=

= +∑  

• Variance: 
11

2
ˆ( ( ; )) ( ) ( )d

d d
h N

Var f x h f x o N hν − −= +  
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Multivariate Density Estimation 
 

• IMSE: 
2

2 4 4 11 1
2 24

1

ˆ( ) ''( ) ( ) ( )d

d
d d

dh N x
i

IMSE f h f x dx o h o N hν µ − −

=

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
∑∫  

• FOC for IMSE for optimal bandwidth, 
1/(4 )

1/(4 )2
2

2
2

1

*
''( )

d

d
d

N d

dx
i

dh N
f x dx

ν

µ

+

− +

=

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∫
 

• Optimal bandwidth yields an IMSE with an error of size 4/(4 )dN − +  
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Multivariate Density Estimation 
 

• The rate of convergence decreases as d  increases (curse of 
dimensionality!) 

• Curse of dimensionality is not a drawback of KDEs, but a drawback 
of the nonparametric density estimation problem (i.e. KDEs achieve 
optimal rates under maintained assumptions about the derivatives of 
the density) 

• No alternative estimator (k-NN, splines, etc.) can do better under 
maintained assumptions 

• Same problem holds for kernel regression, kernel binary choice, etc. 

• One solution: avoid fully nonparametric problems 

• Estimators that combine parametric and nonparametric components 
are an attractive alternative (see Lecture 3) 
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Computational Tricks for KDEs 
 

• Much “folk wisdom” in applying KDEs (and nonparametric estimators 
more generally) 

• Here, we will cover some of the secret tricks often used 

• Consider computation of density of Senate incumbent positions 

• Load data in r: 
library(xlsReadWrite) # load library 
xls1 <-
read.xls("D:\\Teaching\\Spring_2010_Yale_Lecture\\sen
ate.xls", colNames=TRUE) # read data (change this to 
the location on your hard drive) 
N <- dim(xls1)[1] # sample size 
X <- xls1$inc_pos # generate data 
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Computational Tricks for KDEs 
 

• The kernel density estimator is an infinite dimensional quantity 

( )1

1

ˆ ( ; ) n
N

X x
hN h

n

f x h K −

=

= ∑  

• In practice, estimation means computing ˆ ( ; )f x h  on a finite grid of 
points (typically equally spaced) 

I <- 201 # grid size 
xlow <- -1 # low point of grid 
xhigh <- 1 # high point of grid 
grid <- xlow+(xhigh-xlow)*(0:(I-1))/(I-1) # create 
grid 
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Computational Tricks for KDEs 
 
• Select the bandwidth using normal reference rule: 

# select bandwidth using normal reference rule 
hROT <- (nu2 * 8 * pi^.5)^.2 * (3 * mu2^2)^-.2 * 
min(sd(X),IQR(X) / 1.34) * N^-.2 # normal reference 
rule 
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Computational Tricks for KDEs 
 

• Estimate kernel on a grid: 
h=hROT # set bandwidth 
ker1=matrix(rep(0,N*I),N) # allocate matrix 
for(n in 1:N) ker1[n,1:I]= kerfunc((grid-
X[n])/h)/(N*h) 
kerest1 <- rep(1,N) %*%  ker1 
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Computational Tricks for KDEs 
 

• Asymptotic standard errors: 
5/ 2 1/ 21

2 0 2 02
ˆ ˆ( ; ) ''( ) ( ) /f x h f x h N f x hNµ ν−− ±  

• Requires estimating 0 ''( )f x : 

• One approach, 

( )1

1

ˆ ''( ; ) '' n
N

X x
hN h

n

f x h K −

=

= ∑  

• For Normal kernel, 

( ) ( ) ( )2 2

2

2
1 4 1 2

2 2
1 1

ˆ ''( ; )
X x X xn n

h hn
N N

X x
hN h h N

n n

f x h e e
π π

− −− −−

= =

= −∑ ∑
 

• Optimal rate for h  will be different, but ˆ ''f  estimate 0 ''f  consistently 
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Computational Tricks for KDEs 
 

• Now consider estimating 2
0 ''( )

x
f x dx∫  using 2ˆ ''( )

x
f x dx∫ , as is required 

for plug-in rule 

• 2ˆ ''( )
x

f x dx∫  involves very messy expression 

• Alternative, using finite difference approximations to derivatives and 
integrals 
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Computational Tricks for KDEs 
 

• Discrete derivatives: 
discrete_deriv <- function(x,f) 
{ 
 n <- length(x) 
 fp <- rep(n,0) 
 fp[1] <- (f[2] - f[1]) / (x[2] - x[1]) 

fp[2:(n-1)] <- (f[3:n]-f[1:(n-2)]) / (x[3:n]-
x[1:(n-2)]) 

 fp[n] <- (f[n] - f[n-1]) / (x[n] - x[n-1]) 
 return(fp) 
} 
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Computational Tricks for KDEs 
 

• Discrete integrals: 
discrete_int <- function(x,f) 
{ 
 n <- length(x) 
 F <- rep(0,n) 
 for(i in 2:n) F[i] = F[i-1] + f[i-1]*(x[i]-x[i-1]) 
 return(F) 
} 
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Computational Tricks for KDEs 
 

• Select the bandwidth using plug-in rule: 
plug_in <- function(h,N,I,grid,X) 
{ 
 ker1=matrix(rep(0,N*I),N) 

for(n in 1:N) ker1[n,1:I]=kerfunc((grid-
X[n])/h)/(N*h) 

 kerest1 <- rep(1,N) %*%  ker1 
 kerest1p <- discrete_deriv(grid,kerest1) 
 kerest1pp <- discrete_deriv(grid,kerest1p) 
 F <- discrete_int(grid,kerest1pp^2) 
 return(h - nu2^.2 * (mu2^2 * F[I] * N)^-0.2) 
} 
opt2 <- 
uniroot(f=plug_in,interval=c(0.1*hROT,10*hROT),N,I,gr
id,X,mu,nu,kerfunc) 
hPI <- opt2$root 
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Computational Tricks for KDEs 

 

• Bootstrap standard errors: 
R <- 100 # number of bootstrap replications 
kerestCurr <- matrix(rep(0,R*I),R) 
for(r in 1:R) 
{ 
 XCurr = sample(X,replace=T) 
 kerCurr=matrix(rep(0,N*I),N) 

for(n in 1:N) kerCurr[n,1:I]=kerfunc((grid-
XCurr[n])/h)/(N*h) 

 kerestCurr[r,1:I] <- rep(1,N) %*%  kerCurr 
} 
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Computational Tricks for KDEs 

 

• Bootstrap standard errors (con’t): 
lower95b <- rep(I,0) 
upper95b <- rep(I,0) 
for(i in 1:I) 
{ 

lower95b[i]=quantile(kerestCurr[1:R,i],probs=.025,
type=4) 
upper95b[i]=quantile(kerestCurr[1:R,i],probs=.975,
type=4)  

} 
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Computational Tricks for KDEs 

 

• Naïve computational cost – O(NI) 

• Binning – O(I^2) 

• For large data sets, bin data using equally spaced grid 1( ,..., )Ix x% %  

• Basically, round nX  to the nearest grid point 

• Define 1 #{ : arg min | |}i n iN
i

w n n X x= = − %  

• Binned KDE is ( )1

1

ˆ ( ; ) i j
I

x x
i jhN h

j
f x h w K −

=

= ∑ % %
%  

• Binning w/ Fast Fourier Transform – O(I * log(I)) 
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Take Away Points 
 

• Purely nonparametric problems are difficult: 

• Curse of dimensionality 

• Best ways to avoid the curse of dimensionality ( 2/( 4)dN − + ): 

 Focus on a finite dimensional parameter of interest ( 1/ 2N − ) 

 Focus on one-dimensional function of interest ( 2/5N − ) 

• Often, we are really interested in a single β , the maximum value, 
the average derivative, and integrals (expected values) of the 
distribution, etc. 

• Often, only a one-dimensional function is of interest 

• How would we report high-dimensional functions? (we would end 
up focusing on low dimensional problems anyway) 
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Take Away Points 
 

• Every nonparametric problem is different: 

• We can derive large sample approximation, obtain formulas for 
optimal bandwidth choices, formulas for standard errors, obtain 
efficiency bounds, one problem at a time 

• Better solution is to focus on methods which most easily 
generalize 

• Unfortunately, often may have to code from scratch for your 
problem 
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Take Away Points 
 

• When applying Kernel methods more generally 

• Avoid procedures that require analytical derivations, since they 
may not be available for your problem 

• Use normal reference rule for density (“lazy” rule of thumb) 

• Use bootstrap to construct CIs and test statistics 

• Avoid bootstrap for non-smooth statistics for which bootstrap 
may not be consistent 



Lecture 2: Density Estimation Page 66 
 

Take Away Points 
 

• Some stuff to try at home: 

• Use code on website to replicate plots in lecture 

• Perform similar calculations for incumbent spending 

• Derive normal reference rule for multivariate KDE using optimal 
bandwidth formula given in lecture notes 

• Estimate the joint density of incumbent position and incumbent 
spending 

 

• Next lecture: 

• Kernel regression and semiparametric estimation 


