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Overview of Density Estimation

e Nonparametric Model: statistical model characterized by infinite
dimensional unknown parameter

e y,~ f where f is unknown (density estimation)
° y,=0(x,)+¢,, Elg, | X,]1=0 (nonparametric regression)

e Pr(y,=1) =G(x ) (nonparametric binary choice)

e Unlike the “easy” semiparametric estimators we covered in Lecture
1, the nonparametric and semiparametric estimators we study in
Lecture 3 will be “hard™

e Lecture 2 provides the background for these problem by studying
one problem- density estimation using kernel methods- in great detail
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Overview of Density Estimation

e Kernel techniques generalize to problems beyond density estimation

e What we learn about nonparametric problems from kernel
techniques generalize to alternative estimators such as:

o k-nearest neighbor estimators (also called “matching” estimators)
e Smoothing splines

e Sieve estimators (estimation using orthogonal functions such as
polynomials or Fourier series)

e Histogram estimators (for density estimation)
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Kernel Density Estimation

e The Density Estimation Problem:

o We assume that {X }", are i.i.d. draws from a common
distribution f,(x)

e The density estimation problem is the problem of estimating
f,(x) while placing only minimal restrictions on f,

o We would like to develop an estimator f of the density f,
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Kernel Density Estimation

e The Kernel Density Estimator (KDE) is defined by,
. N

f(xh) = > K(52)
n=1

e Here, K denotes the kernel and h denotes the bandwidth

e The Kernel satisfies:
() K@u)=0

(ii) J‘K(u)dx:l
(iii) :uK(u)du:O

(iv) [u’K(u)du>0
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Kernel Density Estimation

e Examples of Kernels:

Name K(u)
_ %, —1<u<l
Uniform K(u)= .
0, otherwise

1-|u|, -1<u<l

. K u)=
Triangle (u) { 0, otherwise

3(1-u?), -1l<u<1l

E hnikov | K(u) =
panechnikov | K(u) { 0 0

1,2
Gaussian K(u)=-1ge

1
N2
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Kernel Density Estimation

e Example w/ N=10 Data Points — Ruqg Plot:
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Kernel Density Estimation

e Example w/ N=10 Data Points — Individual Kernels (h=.5):
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Kernel Density Estimation

e Example w/ N=10 Data Points — Density Estimate (h=.5):
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Kernel Density Estimation

e The bandwidth h controls the amount of smoothing
 Large values of h denote a large degree of smoothing

» Small values of h denotes a small degree of smoothing
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Kernel Density Estimation

e Example w/ N=10 Data Points — Density Estimate (h=1):
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Kernel Density Estimation

e Example w/ N=10 Data Points — Density Estimate (h=.2):
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Kernel Density Estimation

e Example w/ N=10 Data Points — Density Estimate (h=.2,.5, and 1):
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Kernel Density Estimation

e Example w/ N=200 Data Points — Density Estimate (h=.2,.5, and 1):

10

Q6
I

fret>9

o4
I

Q2
I

Qo
I




Lecture 2: Density Estimation | Page 14

Kernel Density Estimation

e Example: Dow Jones returns for the period 1/1/01 through 12/1/07,
using kernel density estimators (with different bandwidths) and an

estimated normal density

~
—
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Kernel Density Estimation

e Example: Positions of Senate incumbents (h=.3,.1, and 3)

15
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Finite Sample Properties of KDEs

Bias:

N

Bias[ f (x;)] = ELf ()]~ fo(0) = EHZ K )} - (X

n=1

— ﬁi ELK ( th‘x)] — f,(0) =+ E[K (% )]— fo (X)
= [ [#K (%) ] 0)dx = £,(x)

First part of the expression is a local weighted average, with

weighting function w(x'| x) =+ K (%)

Small values of h will mean that the weighting function will be
concentrated around x, meaning that there will be little bias

Large values of h means that we are counting values distant from x
In the average, leading to large bias
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Finite Sample Properties of KDEs

e Variance:

Var( f(X; h)) =Var (ﬁi K ( th‘x )j _ ﬁVar(K ( xnh_x ))

n=1

2
el () -4k ) o
e The h™ terms suggest that the variance decreases as h increases

e Intuitively, we are averaging a large number of quantities when h is
large, so we should expect the variance to decreases.
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Finite Sample Properties of KDEs

e Taylor series expansions give more precise characterization of bias
and variance

 Use change of variables u=**
Bias] f (xih)] = [ [£K (452)] f, (x )~ f,()
— j K (u) f,(x+hu)du - f,(x)

e Now, we will employ the fourth-order Taylor expansion,
fo(x+hu) = f,(x)+ f,'(x)hu +1 f, "(x)h*u® + 1 f,"(x)h°u® + o(h®)

terms
smaller

than h®
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Finite Sample Properties of KDEs

o Define 4, :juuzK(u)du and v, :ju K?*(u)du

e We have,
Bias[ f (x;h)]
_ j KU f,(x)+ f, (x)hu+2 f,"()h%u? +2 £, "()h%® + o(h®)]du — f,(x)

= f,(x) j K (u)du-+ hf, ‘() juuK(u)du+%h2 £, () juuZK(u)du

=1 = =Ly

+50°1, 00 LUK (u)du- () + o(h°)

=1 u,h*f,"(x)+0(h*) (bias goes to 0 as h goes to 0)
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Finite Sample Properties of KDEs

e We can characterize the variance similarly,

Var(f(x;h)) =Ly, f,(x)+O(N™) (variance goes to 0 as Nh goes to «)
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Selecting the Bandwidth

e Holding N fixed, bias increases with h while variance decreases
e Select h to minimize integrated mean-squared error,
MSE( f (x;h)) =Var(f (x;h)) + Bias[ f (x;h)]?
=i V2 fo(X) + 520" £, "(x)* + O(N ™) + o ()
IMSE(f;h)zﬁszr%h“yzzj f,"(x)*dx+O(N™)+o(h®)

e Theoretical bandwidth that minimizes IMSE (obtained via FOC):

1/5
h* — V, N L3
P X
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Selecting the Bandwidth

Naturally, we would like IMSE( f;h) — 0 (which is a property weaker
than consistency)

We require h—0 and Nh—->0as N > »
h* will clearly satisfy the three asymptotic conditions

This result tells us that rate at which to increase h to obtain optimal
results, but we still need a way to determine the constant

Notice that v, and y, can be computed easily

Must have estimate of L f,"(x)*dx

Estimating f,(x) requires estimating L f,"(x)*dx!
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Selecting the Bandwidth

e Constants Characterizing Asymptotic Distribution:

Name K(u) t, = [ UK U)d v, = | K*(u)du
3, —1<u<l
. K u) = 2" 1 1
Uniform (u) {O, otherwise 3 7

1-|u|, -1<u<l
0, otherwise

ol
|

Triangle | K(u) ={

3(1-u%), -1<u<i
Epanech. | K(u) = i ) 1 2
0, 0
Gaussian K(u) = ﬁe‘éuz 1 PN
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Selecting the Bandwidth

e Normal Reference Rule:

o Compute IX f,"(x)*dx for some special density (in this case,
normal) and apply it to our data

e The normal reference rule involves assuming that f,(x) is the
N (u,0°) distribution

o We have that jx f, "(x)*dx = — 7

o Normal reference rule (or rule-of-thumb bandwidth) suggests,

1/5
h= [V28\/;) N5 = coN-Y5

3/122
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Selecting the Bandwidth

e For the normal kernel, we can determine that ¢ = (%)1/5 ~1.059, so
that,

h=1.059cN*°

e Other kernels will yield different constants. To estimate o, we could
use the variance of the data

e Silverman (1986) suggests employing a robust estimator,
O = min{3’1-34(qo.75 - qo.zs)}

where q,,, and q,,; represent the 25 and 75% quantiles
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Selecting the Bandwidth

e Plug-In Method:

o Estimate jx f,"(x)*dx rather than guessing it

» Use normal reference rule to obtain an initial kernel density
estimator, f(x)

e Then, we can use this to approximate L f,"(x)*dx by taking a
second numerical derivative of f (x) and integrating
» We then re-estimate f,(x) using the new bandwidth.

e More sophisticated approach: iterating the plug-in rule to
convergence, or solving for h as a nonlinear system

1/5
h . Vv, N -1/5 — O
u” [ 1"(0% dx(h)
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Selecting the Bandwidth

e Cross Validation:

e Obtain an estimate of the integrated mean-squared error as a
function of h, and minimize it

e The actual integrated mean squared error is,
IMSE (h) = | (f (x;h) = f,(x))?dx

= f2(x: hydx+ | 2 (x)dx -2 f (x;h) f, (x)dx

o Estimate objective function using,

:NLZZ(K K)(X X) Nh(lN—l)izK(w)

n=1l m=1 n=1 m#n

e Here, K - K denote the convolution of the kernel with itself and
can be (tediously) computed analytically for a given choice of
kernel
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Selecting the Bandwidth

e The expression j(h) can then be numerically minimized to
determine the cross validation bandwidth, h,

e One must be careful however, because if there are two data
points such that X = X _, then the cross validation function will

have a minimum at O

e A solution is to use,

() =5 22 (Ko K)(*52) -2k 2, 3 K ()

n=1l m=1 n=1 X, #X,
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Selecting the Bandwidth

e Dow Jones Returns Example continued:

e \We can determine that,

Neor =1.371 h, =1.381 h., =1.739
0.14
0.12 /\
0.1 /
0.08 / \ —s
0.06 / \ g
/ \ f(Normal)

0.04 / \
0.02
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Selecting the Bandwidth

e Senate Incumbent Positions example continued:

e \We can determine that,
h.or =0.126 h,, =0.050 h., =0.063

fret®d
as 10 15
I I I

Qo
I
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Selecting the Kernel

e Suppose that we plug the optimal bandwidth into the formula for the
Integrated mean squared error,

£ 5 2\2/5 o\ 2 s —4/5 -1
IMSE(f,h) = 5(,v,%) (jxf(x) dx) N5 £ o(N )

e The efficiency of the Kernel therefore depends on the constant
2/5, ., 4/5

Hy, VvV,

e We can choose K to solve the calculus of variations problem,
minimize IMSE(K) subject to constraints based on (i) through (iv)
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Selecting the Kernel

Name 2 e E?f?clz?eﬁr\\/ o
Uniform 1 3 1.060
Triangle 5 2 1.011

Epanechnikov % 5 1.000
Gaussian 1 ﬁ 1.041

e Epanechnikov kernel is the most efficient, but the choice of a kernel
In practice does not seem to matter much

e The effect of the kernel on mean-squared error is quite small. The
popular normal kernel has an inefficiency of about 6%.
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Selecting the Kernel

e Senate Incumbent Positions example continued (h=PI):

.

S
~

fret)
Q0 Q2 G4 06 08 10 12 14
I

JAYaN

I
-1.0 -0.5 0.0 0.5 1.0

X

e Notice that of all the kernels, the Gaussian kernel is the only one that
has full support

e Full support is one reason that the Gaussian kernel is often chosen
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Selecting the Kernel

e Senate Incumbent Positions example continued (h=PI):

o Warning: different Kernels require different bandwidths

e In this case, normal=0.050, unif=0.035, triangular=0.103,
Epanechnikov=0.087
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Large Sample Properties of KDEs

e Like most parametric estimators, kernel density estimators are
consistent and asymptotically normal

e They do, however, converge at a slower rate than parametric
estimators

Recall that,

Var(f (x;h)) = v, f,(X) +O(N )

Y2 rather

This implies that the estimator converges at the rate (Nh)
than the usual N2

e When an optimal bandwidth is selected, the convergence rate is
N, which is of course slower that N*
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Large Sample Properties of KDEs

e Under the assumption that h=h*, we can show that the kernel
density estimator is asymptotically normally distributed in the
following sense,

JhN (f (x;h) = f, (X)) —2 5 N (2 1, f, "(X)hZ2N Y2 v, £, (X))

e Notice that the asymptotic distribution is not centered at zero
because (by construction) the bias and variance are of the same
magnitude

e We can eliminate the bias term by over-smoothing, selecting
h=cN™>"* where k>0

JAN (f (x;h) = £, (X)) —2 N (0, v, f, (X))
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Inferences for KDES

e Two major approaches to conducting inferences for kernel density
estimators — asymptotic formulas vs. the bootstrap

e Inference based on asymptotic formulas:

o Asymptotic distribution w/ optimal smoothing

f(x;h) =2 1, f, "0ON%2N 2 £ v, f (%) /</hN

o Asymptotic distribution w/ under-smoothing

f (x;h)£4v, f (x) /AN
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Inferences for KDES

¢ Inference based on the bootstrap:

o We sample S draws, with replacement, form {X_}",.

e To compute the 95% confidence interval of f(x;h), we simply
take the 2.5% and 97.5% quantiles of the empirical distribution
f.(x;h)
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Inferences for KDES

e Senate Incumbent Positions example continued (assymp. CI):

1.4

1.2

1.0

fhat(x)
0.6 0.8

0.4

0.2

- L L L0000 0 0 00 0 O AL 0 WL i .
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0.0
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Inferences for KDES

e Senate Incumbent Positions example continued (bootstrap CI):

15
I

10
I

fret9
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Higher Order Kernels

One can reduce the bias (and improve the convergence rate) of
kernel density estimators by considering higher-order kernels

These are kernels that have more even moments which are zero (the
odd moments are always zero)

This leads to more terms in the Taylor expansion canceling out

It also means that we require f, to have more derivatives in
characterizing the asymptotic distribution
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Higher Order Kernels

e Properties of Higher Order Kernels:
- X X, —X
Bla\{ﬁz K(—nh )} =i
n=1

Var (ﬁi K (%)j =3, f(x)+o(N™)

hHl,qu fo(r+1) (X) + O(h r+2)

n=1

IMSE(h) = v, + ()W a1, [ (£ (X)) -+ (N ) + 0(h*" %)

1/(2r+3)
h* — V5 N ~L/(2r+3)
(2r +2) ()’ pe” |, (£ () dx

e Notice that when r =1, we have h*=0O(N™°)
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Higher Order Kernels

e Next, notice that the order of the means square error is
O(N —1h—1) —_ O(N —1—1/(2r+3))

e Notice that this goes to O(N ™) as r — «, meaning that if the space

of functions is sufficiently smooth, then we approximate the
parametric rate
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Higher Order Kernels

e Dow Jones Returns example continued:

0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

-0.02

\

—f (Normal)
——f(3rd Order Normal)
f (5th Order Normal)

f (7th Order Normal)

1]

AN
| —" J

—

5.0 -12.0 -90 -6.0 -30 0.0 30 6.0 9.0 120 15
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Histogram Estimators

e An alternative to kernel density estimators are histogram estimators
e Let h denote the bin size

e Histogram estimator defined by,

( N m

f(x;h) ) ﬁ;;l{h(i -1 <x, <hi}, h(i-1)<x<hi

0, otherwise
 Notice that,
Bias[ f (x;h)] = f,(h(i—1)) - f,(x)+2 f,'(h)h+o(h) for h(i—1) < x < hi
Var(f (x;h)) =2 f,(h(i—1))(1- f,(h(i—-1))+0(N™?) for h(i—1) < x < hi
IMSE( f (x;h)) :ﬁJ“%L f'(x)*dx+o(h*)+0o(N™)
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Histogram Estimators

Optimal bandwidth,

1/3

— 6 N—1/3
_[X(f '(x))?dx

Integrated mean squared error converges at rate N

hy*

The above result indicates that the histogram estimator converges at
a slower rate than the kernel density estimator, but notice that we
require fewer derivatives

We can develop a parallel theory for histogram estimators that
Includes bin selection methods (including cross validation),
asymptotic confidence intervals, etc.
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Efficiency of Density Estimators

e Theorem (stated loosely): Consider the class of pdfs .~ ,, such that

the the mth derivative of f, exists and is bounded in total variation
by M,

Fu =Af ef:jx(ﬂm)(x))zdxs M}

The optimal rate of convergence for the IMSE for any density
estimator in this class is N ™™

e When m=1, we have N?™*™ = N a bound which the Histogram
estimator achieves

e When m=2, we have N?2™™ = N™/°

achieves

- a bound which the KDE

e When m=o, we have N, which is the parametric rate
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Multivariate Density Estimation

Consider now the problem of estimating a d-dimensional density
o (X)

Define the multivariate kernel density estimator to be,

fom =5 21K (%)

n=1 i=1
Bias:
. d
Bias[ f ;)] =4hs, ) , "%, %) +0(h?)
i=1
Variance:

Var(f (x;h)) = =& f (x)v,* +0(N*h™*)



Lecture 2: Density Estimation | Page 49

Multivariate Density Estimation

e IMSE:

IMSE(f)=-% v, +%ﬂ22h4jx(z f, "(x)j dx+o(h*)+o(N*h™)
i=1

e FOC for IMSE for optimal bandwidth,

1/(4+d)

dv,° _
hN*_ 2 N 1/(4+d)

(S

e Optimal bandwidth yields an IMSE with an error of size N~
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Multivariate Density Estimation

The rate of convergence decreases as d increases (curse of
dimensionality!)

Curse of dimensionality is not a drawback of KDEs, but a drawback
of the nonparametric density estimation problem (i.e. KDEs achieve
optimal rates under maintained assumptions about the derivatives of
the density)

No alternative estimator (k-NN, splines, etc.) can do better under
maintained assumptions

Same problem holds for kernel regression, kernel binary choice, etc.
One solution: avoid fully nonparametric problems

Estimators that combine parametric and nonparametric components
are an attractive alternative (see Lecture 3)
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Computational Tricks for KDEs

e Much “folk wisdom” in applying KDEs (and nonparametric estimators
more generally)

e Here, we will cover some of the secret tricks often used
e Consider computation of density of Senate incumbent positions

e Load data in r;

Library(xIsReadWrite) # load library

xIsl <-
read.xIs("'D:\\Teaching\\Spring 2010 Yale Lecture\\sen
ate.xlIs", colNames=TRUE) # read data (change this to
the location on your hard drive)

N <- dim(xlIsl)[1] # sample size

X <- xIsl$inc_pos # generate data
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Computational Tricks for KDEs

e The kernel density estimator is an infinite dimensional quantity
. N
fOxh)=w> K(X“h‘x)

n=1

e |n practice, estimation means computing f(x;h) on a finite grid of
points (typically equally spaced)
I <- 201 # grid size
xlow <- -1 # low point of grid
xhigh <- 1 # high point of grid

grid <- xlow+(xhigh-xlow)*(0:(1-1))/(1-1) # create
grid
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Computational Tricks for KDEs

e Select the bandwidth using normal reference rule:

# select bandwidth using normal reference rule
hROT <- (hu2 * 8 * pI™.5)N.2 * (3 * mu2M"2)N-.2 *

min(sd(X),1I0R(X) /7 1.34) * N*~_2 # normal reference
rule
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Computational Tricks for KDEs

e Estimate kernel on a grid:

h=nROT # set bandwidth
kerl=matrix(rep(O,N*1),N) # allocate matrix
for(n 1n 1:N) kerl[n,l1l:1]=kerfunc((grid-
X[n])/h)/(N*h)

kerestl <- rep(1,N) %*% kerl
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Computational Tricks for KDEs

Asymptotic standard errors:
f(x;h) =1, "OOR2 N2 £ v, f,(x) //hN

Requires estimating f,"(x):

One approach,

oo = 2K (%)
n=1

For Normal kernel,

2

Xp-x\2 N Xp—X
h 1

~ N 2 _ _
Froom = > (22 e )y 2 e 1)
n=1

n=1

Optimal rate for h will be different, but f " estimate f," consistently
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Computational Tricks for KDEs

e Now consider estimating _[X f,"(x)?dx using L f "(x)2dx, as is required
for plug-in rule

o j f "(x)*dx involves very messy expression
X

e Alternative, using finite difference approximations to derivatives and
integrals
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Computational Tricks for KDEs

e Discrete derivatives:

discrete _deriv <- function(x,T)

{
n <- length(x)
fp <- rep(n,0)
fp[1] <- (f[2] - f[1D /7 (xI2] - x[1D
fp[2:(n-1)] <- (F[3:n]-F[1:(n-2)] 7/ (X[3:n]-
X[1:(n-2)])
fpln] <- (f[n] - f[n-11) 7 (X[n] - x[n-11)
return(fp)
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Computational Tricks for KDEs

e Discrete integrals:
discrete_int <- function(x,¥T)

{
n <- length(x)
F <- rep(0,n)
for(h In 2:n) F[1] = F[1-1] + f[i-1]1*X[1]-x[1-1]))
return(F)
by
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Computational Tricks for KDEs

e Select the bandwidth using plug-in rule:

plug in <- function(h,N,1,grid,X)
{
kerl=matrix(rep(O,N*1),N)
for(n 1n 1:N) kerl[n,l:1]=kerfunc((grid-
X[n])/h)/(N*h)
kerestl <- rep(1,N) %*% kerl
kerestlp <- discrete _deriv(grid,kerestl)
kerestlpp <- discrete_deriv(grid,kerestlp)
F <- discrete_int(grid,kerestlpp”2)
return(h - nu2™.2 * (mu2*2 * F[I] * N)*-0.2)
by
opt2 <-
uniroot(f=plug _in,interval=c(0.1*hROT,10*hROT),N,I,gr
1d,X,mu,nu,kerfunc)
hP1 <- opt2%root
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Computational Tricks for KDEs

e Bootstrap standard errors:

R <- 100 # number of bootstrap replications
kerestCurr <- matrix(rep(O,R*1),R)
for(r In 1:R)
{
XCurr = sample(X,replace=T)
kerCurr=matrix(rep(0,N*1),N)
for(n 1n 1:N) kerCurr[n,l:1]=kerfunc((grid-
XCurr[n])/h)/(N*h)
kerestCurr|r,1:1] <- rep(1,N) %*% kerCurr
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Computational Tricks for KDEs

e Bootstrap standard errors (con’t):

lower95b <- rep(1,0)
upper9sb <- rep(l1,0)
for(r 1In 1:1)

{
1],probs=.025,

lower95b[1]=quantile(kerestCurr[1l:R,

type=4)
upper9sb1]=quantile(kerestCurr[l1l:R,1],probs=.975,

type=4)
¥
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Computational Tricks for KDEs

e Naive computational cost — O(NI)
e Binning — O(1"2)
» For large data sets, bin data using equally spaced grid (X,...,X,)

» Basically, round X, to the nearest grid point

e Define W, :ﬁ#{n ‘n=arg mm | Xn _ )~(i |}
A~ I o
e Binned KDE is f(ii;h):ﬁZWjK(%)
j=1

e Binning w/ Fast Fourier Transform — O(l * log(l))
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Take Away Points

e Purely nonparametric problems are difficult:

o Curse of dimensionality

 Best ways to avoid the curse of dimensionality (N *%):

= Focus on a finite dimensional parameter of interest (N %)
= Focus on one-dimensional function of interest (N ")

o Often, we are really interested in a single £, the maximum value,

the average derivative, and integrals (expected values) of the
distribution, etc.

e Often, only a one-dimensional function is of interest

o How would we report high-dimensional functions? (we would end
up focusing on low dimensional problems anyway)
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Take Away Points

e Every nonparametric problem is different:

e We can derive large sample approximation, obtain formulas for
optimal bandwidth choices, formulas for standard errors, obtain
efficiency bounds, one problem at a time

o Better solution is to focus on methods which most easily
generalize

o Unfortunately, often may have to code from scratch for your
problem
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Take Away Points

e When applying Kernel methods more generally

e Avoid procedures that require analytical derivations, since they
may not be available for your problem

e Use normal reference rule for density (“lazy” rule of thumb)
e Use bootstrap to construct Cls and test statistics

e Avoid bootstrap for non-smooth statistics for which bootstrap
may not be consistent
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Take Away Points

e Some stuff to try at home:
e Use code on website to replicate plots in lecture
e Perform similar calculations for incumbent spending

e Derive normal reference rule for multivariate KDE using optimal
bandwidth formula given in lecture notes

o Estimate the joint density of incumbent position and incumbent
spending

e Next lecture:

o Kernel regression and semiparametric estimation



