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Overview 
 

• In lecture 1, we considered “easy” semiparametric estimators that did 
not require estimating an infinite dimensional quantity 

• These estimators retained parametric ( N ) convergence rates 

• In lecture 2, we considered nonparametric density estimation 

• In the one dimensional case, convergence was slower than 
( N ) 

• In higher dimensions, convergence became slower and slower 
( 2/(4 )dN + ) 

• In lecture 3, we will cover nonparametric regression techniques 

• 0 ( )n n ny g x ε= +  (nonparametric regression) 

• 0Pr( 1| ) ( )n n ny x G x= =  (nonparametric binary choice) 

• In both cases, curse of dimensionality ( 2/(4 )dN + ) 
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Overview 
 

• In lecture 3, we will apply the “toolbox” from lecture 2 to study “hard” 
semiparametric and nonparametric problems 

• In some cases, we can estimate the parameter of interest at the 
parametric rate ( N ), but require estimating an infinite 
dimensional quantity in the process (semiparametric estimation) 

 0 0( ' )n n ny g xβ ε= +  (linear index model) 

 0 0Pr( 1| ) ( ' )n n ny x G xβ= =  (semiparametric binary choice) 

• In other cases, the parameter of interest will be infinite 
dimensional, but we will control for nuisance variables using a 
parametric component 

 0 0( ) 'n n n ny g x zβ ε= + +  (partially linear model) 
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Kernel Regression 
 

• Consider the relationship, 0 ( )n n ny g x ε= + , where ( , )n nx ε  are iid and 
[ | ] 0n nE xε = . 

• The (locally constant) Kernel estimator is defined by, 
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• Motivation: to evaluate [ | ]nE y x , look at average value of ny  for nx  ‘s 
that are close to x  (weighted by their closeness) 
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Kernel Regression 
 

• Why it works (heuristic proof of consistency): 
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Kernel Regression 
 

• Kernel regression estimators have many properties similar to kernel 
density estimators 
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Kernel Regression 
 

• Minimizing this expression yields, 
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• We therefore find that the IMSE has an error of 4 /5( )O N −  when the 
optimal bandwidth is selected 

• Plug in rule is really messy 

• Normal reference rule won’t really work since we would still have to 
guess 0g  
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Kernel Regression 
 

• Cross validation: 
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• Easy alternative: use ROT for density 0f  even though this rule is not 
specifically optimized for kernel regression 
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Kernel Regression 
 

• Example: Effect of Position on Vote Share for Senate Incumbents 
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Kernel Regression 
 

• Example: Effect of Position on Vote Share for Senate Incumbents 
(h=.03, .01, and .3) 
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Kernel Regression 
 

• Example: Effect of Position on Vote Share for Senate Incumbents 
(hROT=0.126) 
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Kernel Regression 
 

• Example: Effect of Position on Vote Share for Senate Incumbents w/ 
Bootstrapped Standard Errors: 
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Kernel Regression 
 
• For the Locally Linear estimator, we have, 

0 1
ˆ ˆ ˆ( ) ( ) ( )f x x x xβ β= +  

where, 
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• We can determine that, 
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Kernel Regression 
 
• We can derive the IMSE to be, 
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• The variance is the same as the locally constant estimator, but the 
bias is different 

• The bias of the estimator will tends towards OLS rather than a flat 
curve 



Lecture 3: Applications of Nonparametric Techniques Page 14 
 

Multivariate Kernel Regression 
 

• Consider the relationship, 0 ( )n n ny g x ε= + , where ( , )n nx ε  are iid and 
[ | ] 0n nE xε =  

• The (locally constant) Kernel estimator is defined by, 
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Kernel Binary Choice 
 

• Consider the relationship, 0Pr( 1| ) ( )n n ny x G x= =  

• The Kernel estimator is defined by, 
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• Notice that this is the same estimator and the Kernel regression 
estimator 
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Semiparametric Binary Choice 
 

• Parametric binary choice (i.e. probit) 
Pr( 1| ) ( ' )n n ny x xβ= = Φ  

• Nonparametric binary choice 

0Pr( 1| ) ( )y x G x= =  

• Semiparametric binary choice 

0Pr( 1| ) ( ' )n n ny x G xβ= =  
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Semiparametric Binary Choice 

 

• Why consider semiparametric binary choice model? 

• Parametric binary choice (i.e. probit) 
Pr( 1| ) ( ' )n n ny x xβ= = Φ  

• Marginal effect of kx  

Pr( 1| ) ( ' )
k n kx y x xβ φ β∂

∂ = =  
• Magnitude of ( ' )k xβ φ β  is largest when ' 0xβ =  

• Same will hold for any symmetric unimodal density 

• Fully nonparametric model is too general (hard to report results) 
and suffers from curse of dimensionality 
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Semiparametric Binary Choice 
 

• For semiparametric binary choice model, 
Pr( 1| ) ( ' )

k n kx y x g xβ β∂
∂ = =  

• If g  is not symmetric, then Pr( 1| )
k nx y x∂

∂ =  need not peak when 
' 0xβ =  

• In an application to campaigning, this assumption implies that 
moderate voters are most sensitive to campaigning (maybe) 

• In an application to GOTV, this implies that voters with a predicted 
probability of voting of 0.5 are most sensitive to GOTV (maybe) 

• These are assumptions! 

• Semiparametric binary choice model allows us to relax/test these 
assumptions
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Semiparametric Binary Choice 
 

• It would be nice if there were an “easy” semiparametric estimator 
that did not require estimating 0G  (i.e. like OLS  w/ robust standard 
errors does not require estimating 2[ | ]n nE xε  in order to deal w/ 
heteroskedasticity) 

• Manski’s maximum score estimator is an attempt to provide such  an 
estimator 

1
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β β β
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• The Maximum Score Estimator is consistent under the assumption 
that 0 (0) 0G =  (i.e. the median error is normalized to zero) 

• It is consistent even when the errors exhibit non-normality/time 
series dependence 

• Great, right? 
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Semiparametric Binary Choice 
 

• First drawback of MSE: 

• It does not provide an estimate of 0G , which is a problem, if 0G  is 
of interest (i.e. testing for asymmetric campaign effects) 

• As long as G  is a nuisance parameter (i.e. as long as we are 
only interested in robustness to asymmetric campaign effects), 
doesn’t matter 
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Semiparametric Binary Choice 
 

• Second drawback of MSE: 

• Theory is “weird” 

• The estimator is consistent, under very broad assumptions about 
error term in nonparametric probit model 

• The estimator converges slowly ( 1/3N ) 

• The estimator is not asymptotically normal (Kim and Pollard, 
1989) 

• Even worse, bootstrap is inconsistent for MSE (Abrevaya and 
Huang, 2005) 
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Semiparametric Binary Choice 
 

• The Semiparametric Kernel Estimator: 

• Define 'n nz xβ=  

• If we knew β , we would have 0Pr( 1| ) ( )n n ny z G z= =  

• We can form,  
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Semiparametric Binary Choice 
 

• Approach we use embeds kernel estimator in log-likelihood 

• Consider the estimator given by, 
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• We must impose the restrictions 0 0β =  and 1 1β =  for identification 
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Semiparametric Binary Choice 
 

• The estimator is N -consistent and asymptotically normal for 0β  

• Large sample properties of this (and many other estimators) follow 
from Andrew’s (1994) MINPIN theorem 

• Define, 
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• We have, 
. 1 1
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Semiparametric Binary Choice 
 

• Where can then estimate, 
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• Alternatively, we can use the bootstrap to conduct inference about 
0β  and 0G  (especially if 0G  is of direct interest)
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Semiparametric Binary Choice 

 

• Selecting the Bandwidth: 

• “Lazy” rule of thumb: 
 For each β , form 'n nz xβ=  

 Compute h  based on normal reference rule for the density of 
nz  (notice that there is a different  h  each time the objective 

function is evaluated at β  

 This is an ad-hoc rule, but at least you get the rates correct 
(i.e. 1/5h cN −= ) 

• Plug in rule not available (as far as I know) because asymptotic 
formulas get VERY complicated 
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Semiparametric Binary Choice 
 

• Cross Validation: 

1
( ) ( )

1
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where ( )
ˆ

nG  is the leave-one-out estimator 

• Two approaches: 

• Iterate between MLE and CV 

• Simultaneously maximize 

• I don’t really recommend either approach 
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Semiparametric Binary Choice 
 

• Example: Semiparametric Model of Presidential Vote in 2004 
Election (coefficient estimates) 
 
           

Probit Probit Semiparametric
(Normalized) (Normalized)

est. se est. se est. se boot se
(Intercept)     ‐0.056 (0.146) 0.000 0.000
Prox. Diff.      0.393 (0.044) 1.000 1.000
Party Dem.     ‐0.967 (0.228) ‐2.460 ‐2.341 (0.949) [0.811]
Party Rep.        1.049 (0.210) 2.668 2.766 (0.652) [0.699]
Black       ‐1.336 (0.361) ‐3.398 ‐3.374 (1.022) [0.992]
Female   0.161 (0.171) 0.411 0.427 (0.424) [0.452]
South   0.227 (0.196) 0.577 0.553 (0.459) [0.485]
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Semiparametric Binary Choice 
 

• Example: Semiparametric Model of Presidential Vote in 2004 
Election (estimate of G) 
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Semiparametric Binary Choice 
 

• Example: Semiparametric Model of Presidential Vote in 2004 
Election (estimate of g) 
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Semiparametric Binary Choice 
 

• Example: Semiparametric Model of Presidential Vote in 2004 
Election (estimate of g w/ bootstrapped CIs) 
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Semiparametric Binary Choice 
 

• Back to Marginal Effects: 
Pr( 1| ) ( ' )

k n kx y x g xβ β∂
∂ = =  

• Marginal effects depend on estimate of g  

• Consider (weighted) average marginal effect 

Pr( 1| ) ( ) ( ' ) ( )
kk n kx x x

y x w x dx g x w x dxθ β β∂
∂= = =∫ ∫  

• ˆ ˆ ˆˆ ( ' ) ( )k k x
g x w x dxθ β β= ∫  is N –consistent (average derivatives 

can be estimated at the parametric rate) 
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Semiparametric Binary Choice 
 

• This is a very generalizable principal- even when we require 
preliminary estimates of infinite dimensional quantities, we are 
ultimately interested in finite dimensional quantities, which can 
often be estimated at the parametric rate 

• Exceptions are statistics which are not smooth (such as the 
mode) 
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Partially Linear Models 
 

• Kernel regression estimators are of limited use on their own 

• Most social science applications involve multiple explanatory 
variables 

• As with binary choice, fully nonparametric approach suffers from the 
curse of dimensionality 

• Partially linear model provide a way of having multiple regressors 
with one degree of nonparametrics 

0 0' ( )n n n ny z g xβ ε= + +  

• If 0β  is of interest and 0g  is a nuisance parameter, we have a semi-
parametric model 

• If 0g  is of interest and 0β  is a nuisance parameter, we have a low-
dimensional nonparametric model (picture w/ controls) 
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Partially Linear Models 
 

• Suppose that we knew the value of β , we could define 'n n nw y zβ= −  
and consider the model, 0 ( )n n nw g x ε= + , applying the Kernel 
regression estimator 
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• We can plug this estimator into the equation above to obtain 
ˆ ( ; ) 'n n n ny g x zβ β ε− = +  

• We can then estimate 0β  using least squares, 
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Partially Linear Models 
 

• For this model (unlike the semiparametric binary choice model) we 
can apply some computational tricks 

• Let us write, 
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• We have that, 
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Partially Linear Models 
 

• Large sample distribution: 
. 1 1

0
ˆ( ) ( )prob

zz z zzN N Q V Qεβ β − −− ⎯⎯⎯→  

where we can estimate, 
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• If inferences about g  are desired, use bootstrap 

• Once again, average marginal effects of nx  can be estimated at 
parametric rate 
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Partially Linear Models 
 

• Example: Candidate Positioning in Senate Elections w/ Controls 

 

 



Lecture 3: Applications of Nonparametric Techniques Page 39 
 

Partially Linear Models 
 

• Example: Candidate Positioning in Senate Elections w/ Controls 

 
     

Beta Se  Boot. Se
st_pop 0.020 (0.006)  [0.008]
st_south ‐0.004 (0.011)  [0.012]
st_unemp ‐0.002 (0.005)  [0.002]
inc_dem 0.024 (0.038)  [0.038]
inc_tenure 0.002 (0.002)  [0.001]
inc_spend ‐0.005 (0.005)  [0.002]
ch_qual ‐0.021 (0.004)  [0.003]
ch_spend ‐0.006 (0.003)  [0.002]
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Single Index Models 
 

• The single index model is given by, 

0 0( ' )n n ny g xβ ε= +  

• Kernel estimator, 
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• β  can be estimated at rate N  
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Other Semiparametric Problems 
 

• ATEs in nonparametric models can be estimated at parametric rate 

• Most test statistics (e.g. the density is normal, the regression function 
is monotonic) can be estimated at parametric rate – see Hall and 
Yatchew (2005) 

• Marginal effects that project to entire populations (e.g. average 
derivatives) can be estimated at parametric rate
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Alternative Nonparametric Estimators 

 

• k-Nearest neighbor estimator: 

• Consider the multivariate nonparametric regression problem: 

0 ( )n n ny g x ε= +  

• The k-NN estimator is given by, 

1

1

ˆ ( ; ) 1 ( )
N

nk nk
n

g x k x y
=

= ∑  

where 1nkI = ⇔  nx  is one of the k  closest points to x  

• Issues: 
 Selecting k  
 Computation 
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Alternative Nonparametric Estimators 

 

• Sieve estimator: 

1

ˆ ( ) ( )
m

i i
i

g x a h x
=

=∑
 

• Here, 1{ ( )}i ih x ∞
=  are basis functions 

• For example, if ( ) i
ih x x= , we have 0

1

ˆ ( )
m

i
i

i

g x a x
=

=∑   

• Issues: 
 Selecting m  
 Becomes very complicated in higher dimensions 
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Alternative Nonparametric Estimators 

 

• Smoothing splines: 

2 21

1

ˆ arg max ( ( )) ( ''( ))
N

n nN xg n

g y g x g x dxλ
=

= − −∑ ∫
 

• Solution is a cubic spline with knots at all the data points 

• Computation involves linear algebra 

• Easy to impose shape restrictions (i.e. monotonicity) – becomes 
quadratic programming problem 

• Issues: 
 Selecting λ  (smoothing parameter) 
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Concluding Thoughts 

 

• Many “easy” semiparametric estimators exist, which provide 
robustness at little cost 

• No need to estimate infinite dimensional quantities of interest 

• Very easy to apply 

• Basic principle extends (i.e. conventional ideal point estimators 
remain consistent if errors terms are correlated across multiple 
votes on the same bill) 

• Fully nonparametric estimators can be applied 

• The cost is slower convergence rates (and the curse of 
dimensionality) 

• Somewhat difficult to apply 

• Kernel estimators are not necessarily the best, but they are the 
easiest (and achieve optimal rates of convergence) 
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Concluding Thoughts 

 

• Optimize tradeoff between robustness and efficiency via models with 
parametric and nonparametric components 

• Semiparametric modeling 
 If parameter of interest is finite dimensional, parametric rate 
can be achieved 

 Sandwich estimators can be applied for inference  
 Test statistics can often be estimated at the parametric rate 

• One dimensional infinite dimensional parameter of interest 
 Parametric rate is not achieved, but curse of dimensionality 
is avoided 

 Implementation of these flexible models is more difficult, but 
problems are not insurmountable 


